Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis

Abstract

We introduce an approach for detection of drug-protein interactions that combines a new yeast three-hybrid screening for identification of interactions with affinity chromatography for their unambiguous validation. We applied the methodology to the profiling of clinically approved drugs, resulting in the identification of previously known and unknown drug-protein interactions. In particular, we were able to identify off-targets for erlotinib and atorvastatin, as well as an enzyme target for the anti-inflammatory drug sulfasalazine. We demonstrate that sulfasalazine and its metabolites, sulfapyridine and mesalamine, are inhibitors of the enzyme catalyzing the final step in the biosynthesis of the cofactor tetrahydrobiopterin. The interference with tetrahydrobiopterin metabolism provides an explanation for some of the beneficial and deleterious properties of sulfasalazine and furthermore suggests new and improved therapies for the drug. This work thus establishes a powerful approach for drug profiling and provides new insights in the mechanism of action of clinically approved drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A Y3H system based on SNAP-tag labeling.
Figure 2: Illustration of the yeast-based platform for drug profiling.
Figure 3: Analysis of hits obtained from purvalanol B and erlotinib profiling.
Figure 4: Analysis of hits obtained from atorvastatin profiling.
Figure 5: Analysis of the interaction of sulfasalazine with SPR.

Similar content being viewed by others

References

  1. Terstappen, G.C., Schlupen, C., Raggiaschi, R. & Gaviraghi, G. Target deconvolution strategies in drug discovery. Nat. Rev. Drug Discov. 6, 891–903 (2007).

    Article  CAS  Google Scholar 

  2. Chan, J.N., Nislow, C. & Emili, A. Recent advances and method development for drug target identification. Trends Pharmacol. Sci. 31, 82–88 (2010).

    Article  CAS  Google Scholar 

  3. Rix, U. & Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 5, 616–624 (2009).

    Article  CAS  Google Scholar 

  4. Licitra, E.J. & Liu, J.O. A three-hybrid system for detecting small ligand-protein receptor interactions. Proc. Natl. Acad. Sci. USA 93, 12817–12821 (1996).

    Article  CAS  Google Scholar 

  5. Becker, F. et al. A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem. Biol. 11, 211–223 (2004).

    Article  CAS  Google Scholar 

  6. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  CAS  Google Scholar 

  7. Kolaczkowski, M., Kolaczowska, A., Luczynski, J., Witek, S. & Goffeau, A. In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb. Drug Resist. 4, 143–158 (1998).

    Article  CAS  Google Scholar 

  8. McMurray, M.A. & Thorner, J. Septin stability and recycling during dynamic structural transitions in cell division and development. Curr. Biol. 18, 1203–1208 (2008).

    Article  CAS  Google Scholar 

  9. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. & Kraut, J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. J. Biol. Chem. 257, 13650–13662 (1982).

    CAS  PubMed  Google Scholar 

  10. Gendreizig, S., Kindermann, M. & Johnsson, K. Induced protein dimerization in vivo through covalent labeling. J. Am. Chem. Soc. 125, 14970–14971 (2003).

    Article  CAS  Google Scholar 

  11. Mayer, R.J., Chen, J.T., Taira, K., Fierke, C.A. & Benkovic, S.J. Importance of a hydrophobic residue in binding and catalysis by dihydrofolate reductase. Proc. Natl. Acad. Sci. USA 83, 7718–7720 (1986).

    Article  CAS  Google Scholar 

  12. Murphy, D.J. & Benkovic, S.J. Hydrophobic interactions via mutants of Escherichia coli dihydrofolate reductase: separation of binding and catalysis. Biochemistry 28, 3025–3031 (1989).

    Article  CAS  Google Scholar 

  13. Koegl, M. & Uetz, P. Improving yeast two-hybrid screening systems. Brief. Funct. Genomics Proteomics 6, 302–312 (2008).

    Article  Google Scholar 

  14. Vidalain, P.O., Boxem, M., Ge, H., Li, S. & Vidal, M. Increasing specificity in high-throughput yeast two-hybrid experiments. Methods 32, 363–370 (2004).

    Article  CAS  Google Scholar 

  15. Fromont-Racine, M., Rain, J.C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat. Genet. 16, 277–282 (1997).

    Article  CAS  Google Scholar 

  16. Karaman, M.W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    Article  CAS  Google Scholar 

  17. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044 (2007).

    Article  CAS  Google Scholar 

  18. Rix, U. et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110, 4055–4063 (2007).

    Article  CAS  Google Scholar 

  19. Stamos, J., Sliwkowski, M.X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).

    Article  CAS  Google Scholar 

  20. Fairn, G.D. & McMaster, C.R. Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling. Cell. Mol. Life Sci. 65, 228–236 (2008).

    Article  CAS  Google Scholar 

  21. Istvan, E.S. & Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292, 1160–1164 (2001).

    Article  CAS  Google Scholar 

  22. Lockhart, D.J. et al. Pyrrole compounds and uses thereof. Vol. US 7.323.490 B2 (Ambit BioSciences Corporation, 2008).

  23. Wilson, S.J. & Smyth, E.M. Internalization and recycling of the human prostacyclin receptor is modulated through its isoprenylation-dependent interaction with the delta subunit of cGMP phosphodiesterase 6. J. Biol. Chem. 281, 11780–11786 (2006).

    Article  CAS  Google Scholar 

  24. Cordle, A., Koenigsknecht-Talboo, J., Wilkinson, B., Limpert, A. & Landreth, G. Mechanisms of statin-mediated inhibition of small G-protein function. J. Biol. Chem. 280, 34202–34209 (2005).

    Article  CAS  Google Scholar 

  25. Winger, J.A., Hantschel, O., Superti-Furga, G. & Kuriyan, J. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). BMC Struct. Biol. 9, 7 (2009).

    Article  Google Scholar 

  26. Caprilli, R., Cesarini, M., Angelucci, E. & Frieri, G. The long journey of salicylates in ulcerative colitis: the past and the future. J. Crohn's Colitis 3, 149–156 (2009).

    Article  Google Scholar 

  27. Rousseaux, C. et al. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J. Exp. Med. 201, 1205–1215 (2005).

    Article  CAS  Google Scholar 

  28. Sutherland, L. & Macdonald, J.K. Oral 5-aminosalicylic acid for maintenance of remission in ulcerative colitis. Cochrane Database Syst. Rev. CD000544 (2006).

  29. Baggott, J.E., Morgan, S.L., Ha, T., Vaughn, W.H. & Hine, R.J. Inhibition of folate-dependent enzymes by non-steroidal anti-inflammatory drugs. Biochem. J. 282, 197–202 (1992).

    Article  CAS  Google Scholar 

  30. Wahl, C., Liptay, S., Adler, G. & Schmid, R.M. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J. Clin. Invest. 101, 1163–1174 (1998).

    Article  CAS  Google Scholar 

  31. Thöny, B., Auerbach, G. & Blau, N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem. J. 347, 1–16 (2000).

    Article  Google Scholar 

  32. Smith, G.K., Duch, D.S., Edelstein, M.P. & Bigham, E.C. New inhibitors of sepiapterin reductase. Lack of an effect of intracellular tetrahydrobiopterin depletion upon in vitro proliferation of two human cell lines. J. Biol. Chem. 267, 5599–5607 (1992).

    CAS  PubMed  Google Scholar 

  33. Dahan, A. & Amidon, G.L. MRP2 mediated drug-drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting. Int. J. Pharm. 386, 216–220 (2010).

    Article  CAS  Google Scholar 

  34. Gross, S.S. & Levi, R. Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J. Biol. Chem. 267, 25722–25729 (1992).

    CAS  PubMed  Google Scholar 

  35. Bune, A.J. et al. Inhibition of tetrahydrobiopterin synthesis reduces in vivo nitric oxide production in experimental endotoxic shock. Biochem. Biophys. Res. Commun. 220, 13–19 (1996).

    Article  CAS  Google Scholar 

  36. Farrell, A.J., Blake, D.R., Palmer, R.M. & Moncada, S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis. 51, 1219–1222 (1992).

    Article  CAS  Google Scholar 

  37. Singer, I.I. et al. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 111, 871–885 (1996).

    Article  CAS  Google Scholar 

  38. Connor, J.R. et al. Suppression of adjuvant-induced arthritis by selective inhibition of inducible nitric oxide synthase. Eur. J. Pharmacol. 273, 15–24 (1995).

    Article  CAS  Google Scholar 

  39. Kankuri, E. et al. Suppression of acute experimental colitis by a highly selective inducible nitric-oxide synthase inhibitor, N-[3-(aminomethyl)benzyl]acetamidine. J. Pharmacol. Exp. Ther. 298, 1128–1132 (2001).

    CAS  PubMed  Google Scholar 

  40. Farr, M., Brodrick, A. & Bacon, P.A. Plasma and synovial fluid concentrations of sulphasalazine and two of its metabolites in rheumatoid arthritis. Rheumatol. Int. 5, 247–251 (1985).

    Article  CAS  Google Scholar 

  41. Pullar, T., Hunter, J.A. & Capell, H.A. Which component of sulphasalazine is active in rheumatoid arthritis? Br. Med. J. (Clin. Res. Ed.) 290, 1535–1538 (1985).

    Article  CAS  Google Scholar 

  42. Lauritsen, K., Hansen, J., Ryde, M. & Rask-Madsen, J. Colonic azodisalicylate metabolism determined by in vivo dialysis in healthy volunteers and patients with ulcerative colitis. Gastroenterology 86, 1496–1500 (1984).

    CAS  PubMed  Google Scholar 

  43. Klotz, U. Colonic targeting of aminosalicylates for the treatment of ulcerative colitis. Dig. Liver Dis. 37, 381–388 (2005).

    Article  CAS  Google Scholar 

  44. Temperini, C., Cecchi, A., Scozzafava, A. & Supuran, C.T. Carbonic anhydrase inhibitors. Comparison of chlorthalidone, indapamide, trichloromethiazide, and furosemide X-ray crystal structures in adducts with isozyme II, when several water molecules make the difference. Bioorg. Med. Chem. 17, 1214–1221 (2009).

    Article  CAS  Google Scholar 

  45. Gierse, J.K., Koboldt, C.M., Walker, M.C., Seibert, K. & Isakson, P.C. Kinetic basis for selective inhibition of cyclo-oxygenases. Biochem. J. 339, 607–614 (1999).

    Article  CAS  Google Scholar 

  46. Hori, T. et al. Crystal structure of anti-configuration of indomethacin and leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase complex reveals the structural basis of broad spectrum indomethacin efficacy. J. Biochem. 140, 457–466 (2006).

    Article  CAS  Google Scholar 

  47. Tegeder, I. et al. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat. Med. 12, 1269–1277 (2006).

    Article  CAS  Google Scholar 

  48. Lötsch, J., Klepstad, P., Doehring, A. & Dale, O.A. GTP cyclohydrolase 1 genetic variant delays cancer pain. Pain 148, 103–106 (2010).

    Article  Google Scholar 

  49. Berti-Mattera, L.N., Kern, T.S., Siegel, R.E., Nemet, I. & Mitchell, R. Sulfasalazine blocks the development of tactile allodynia in diabetic rats. Diabetes 57, 2801–2808 (2008).

    Article  CAS  Google Scholar 

  50. Blau, N., Bonafe, L. & Thony, B. Tetrahydrobiopterin deficiencies without hyperphenylalaninemia: diagnosis and genetics of dopa-responsive dystonia and sepiapterin reductase deficiency. Mol. Genet. Metab. 74, 172–185 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Auerbach (Dualsystems Biotech) for sharing plasmid pU6H3VSV, strain NMY51, BG-purvalanol B and cDNA libraries; N. Johnsson (Ulm University) for sharing plasmid pSH47; and O. Hantschel and G. Superti-Furga (Center for Molecular Medicine of the Austrian Academy of Sciences) for sharing plasmid pETM30-NQO2. We thank S. Moser, L. Reymond and C. Fellay for technical assistance. We acknowledge R. Chidley, M.J. Hinner and G. Lukinavicius for critically reading the manuscript. This work was supported by the Swiss National Science Foundation and the Federal Office for Professional Education and Technology.

Author information

Authors and Affiliations

Authors

Contributions

C.C., H.H. and K.J. designed experiments and analyzed data, C.C. developed and performed yeast-based screens, H.H. and C.C. performed hit validation experiments, M.G.P. measured intracellular biopterin levels, E.M. synthesized drug derivatives, and C.C. and K.J. wrote the paper.

Corresponding author

Correspondence to Kai Johnsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–15 and Supplementary Tables 1 & 2 (PDF 7752 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chidley, C., Haruki, H., Pedersen, M. et al. A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis. Nat Chem Biol 7, 375–383 (2011). https://doi.org/10.1038/nchembio.557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.557

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research