Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualizing the secondary and tertiary architectural domains of lncRNA RepA

Abstract

Long noncoding RNAs (lncRNAs) are important for gene expression, but little is known about their structures. RepA is a 1.6-kb mouse lncRNA comprising the same sequence as the 5′ region of Xist, including A and F repeats. It has been proposed to facilitate the initiation and spread of X-chromosome inactivation, although its exact role is poorly understood. To gain insight into the molecular mechanism of RepA and Xist, we determined a complete phylogenetically validated secondary-structural map of RepA through SHAPE and DMS chemical probing of a homogeneously folded RNA in vitro. We combined UV-cross-linking experiments with RNA modeling methods to produce a three-dimensional model of RepA functional domains demonstrating that tertiary architecture exists within lncRNA molecules and occurs within specific functional modules. This work provides a foundation for understanding of the evolution and functional properties of RepA and Xist and offers a framework for exploring architectural features of other lncRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RepA folds into a compact species after addition of Mg2+.
Figure 2: Secondary structure of RepA derived from SHAPE and DMS probing.
Figure 3: Fragment analysis revealing independently folded domains in RepA.
Figure 4: D1 of RepA contains the functionally important A-repeat motif.
Figure 5: Characterization of the UV-cross-linking sites within RepA.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Flicek, P. et al. Ensembl 2014. Nucleic Acids Res. 42, D749–D755 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Wapinski, O. & Chang, H.Y. Long noncoding RNAs and human disease. Trends Cell Biol. 21, 354–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Gutschner, T. & Diederichs, S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 9, 703–719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, J.T. Epigenetic regulation by long noncoding RNAs. Science 338, 1435–1439 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Sauvageau, M. et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2, e01749 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang, L., Froberg, J.E. & Lee, J.T. Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem. Sci. 39, 35–43 (2014).

    Article  PubMed  Google Scholar 

  7. Quinn, J.J. & Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Wan, Y. et al. Genome-wide measurement of RNA folding energies. Mol. Cell 48, 169–181 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Clark, M.B. et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22, 885–898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Novikova, I.V., Hennelly, S.P. & Sanbonmatsu, K.Y. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 40, 5034–5051 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Somarowthu, S. et al. HOTAIR forms an intricate and modular secondary structure. Mol. Cell 58, 353–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown, C.J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Lyon, M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    Article  CAS  PubMed  Google Scholar 

  16. Galupa, R. & Heard, E. X-chromosome inactivation: new insights into cis and trans regulation. Curr. Opin. Genet. Dev. 31, 57–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Nesterova, T.B. et al. Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res. 11, 833–849 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wutz, A., Rasmussen, T.P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J. & Lee, J.T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sarma, K. et al. ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell 159, 869–883 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McHugh, C.A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moindrot, B. et al. A pooled shRNA screen identifies Rbm15, Spen, and Wtap as factors required for Xist RNA-mediated silencing. Cell Rep. 12, 562–572 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Monfort, A. et al. Identification of Spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep. 12, 554–561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, C.K. et al. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354, 468–472 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Duszczyk, M.M., Zanier, K. & Sattler, M. A NMR strategy to unambiguously distinguish nucleic acid hairpin and duplex conformations applied to a Xist RNA A-repeat. Nucleic Acids Res. 36, 7068–7077 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maenner, S. et al. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol. 8, e1000276 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Duszczyk, M.M., Wutz, A., Rybin, V. & Sattler, M. The Xist RNA A-repeat comprises a novel AUCG tetraloop fold and a platform for multimerization. RNA 17, 1973–1982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fang, R., Moss, W.N., Rutenberg-Schoenberg, M. & Simon, M.D. Probing Xist RNA structure in cells using Targeted Structure-Seq. PLoS Genet. 11, e1005668 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramachandran, S., Ding, F., Weeks, K.M. & Dokholyan, N.V. Statistical analysis of SHAPE-directed RNA secondary structure modeling. Biochemistry 52, 596–599 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Mathews, D.H. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10, 1178–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takamoto, K. et al. Principles of RNA compaction: insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations. J. Mol. Biol. 343, 1195–1206 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Pyle, A.M., Fedorova, O. & Waldsich, C. Folding of group II introns: a model system for large, multidomain RNAs? Trends Biochem. Sci. 32, 138–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Fernández-Luna, M.T. & Miranda-Ríos, J. Riboswitch folding: one at a time and step by step. RNA Biol. 5, 20–23 (2008).

    Article  PubMed  Google Scholar 

  36. Su, L.J., Brenowitz, M. & Pyle, A.M. An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. J. Mol. Biol. 334, 639–652 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Novikova, I.V., Dharap, A., Hennelly, S.P. & Sanbonmatsu, K.Y. 3S: shotgun secondary structure determination of long non-coding RNAs. Methods 63, 170–177 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nawrocki, E.P. & Eddy, S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harris, M.E. & Christian, E.L. RNA crosslinking methods. Methods Enzymol. 468, 127–146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Popenda, M. et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40, e112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. da Rocha, S.T. et al. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell 53, 301–316 (2014).

    Article  PubMed  Google Scholar 

  43. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown, P.H. & Schuck, P. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys. J. 90, 4651–4661 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mortimer, S.A. & Weeks, K.M. A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J. Am. Chem. Soc. 129, 4144–4145 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Vasa, S.M., Guex, N., Wilkinson, K.A., Weeks, K.M. & Giddings, M.C. ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA 14, 1979–1990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McGinnis, J.L., Duncan, C.D. & Weeks, K.M. High-throughput SHAPE and hydroxyl radical analysis of RNA structure and ribonucleoprotein assembly. Methods Enzymol. 468, 67–89 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J.S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Low, J.T. & Weeks, K.M. SHAPE-directed RNA secondary structure prediction. Methods 52, 150–158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weinberg, Z. & Breaker, R.R. R2R: software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics 12, 3 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge M. Simon (Yale University) for sharing the in vivo DMS probing data of Xist and E. Jagdmann for the synthesis of 1M7. We thank T. Dickey, C. Zhao, O. Fedorova, and all other members of the Pyle laboratory for constructive discussion and critical reading of the manuscript. This project was supported by the National Institutes of Health (R01GM50313). A.M.P. is supported as an Investigator, and F.L. is supported as a Postdoctoral Fellow, of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

F.L. and A.M.P. designed the project. F.L. performed the SV-AUC, SEC, SHAPE and DMS probing, and UV-cross-linking experiments and analyzed the data obtained from the aforementioned experiments; F.L. performed the phylogenetic studies; S.S. conducted jackknife resampling, Shannon entropy, and bootstrapping analyses, and performed 3D modeling experiments. F.L., S.S., and A.M.P. wrote the manuscript.

Corresponding author

Correspondence to Anna Marie Pyle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–11 and Supplementary Table 1 (PDF 20667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Somarowthu, S. & Pyle, A. Visualizing the secondary and tertiary architectural domains of lncRNA RepA. Nat Chem Biol 13, 282–289 (2017). https://doi.org/10.1038/nchembio.2272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing