Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hovlinc is a recently evolved class of ribozyme found in human lncRNA

Abstract

Although naturally occurring catalytic RNA molecules—ribozymes—have attracted a great deal of research interest, very few have been identified in humans. Here, we developed a genome-wide approach to discovering self-cleaving ribozymes and identified a naturally occurring ribozyme in humans. The secondary structure and biochemical properties of this ribozyme indicate that it belongs to an unidentified class of small, self-cleaving ribozymes. The sequence of the ribozyme exhibits a clear evolutionary path, from its appearance between ~130 and ~65 million years ago (Ma), to acquiring self-cleavage activity very recently, ~13–10 Ma, in the common ancestors of humans, chimpanzees and gorillas. The ribozyme appears to be functional in vivo and is embedded within a long noncoding RNA belonging to a class of very long intergenic noncoding RNAs. The presence of a catalytic RNA enzyme in lncRNA creates the possibility that these transcripts could function by carrying catalytic RNA domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery of the hovlinc ribozyme.
Fig. 2: Biochemical properties of the hovlinc ribozyme.
Fig. 3: RNA structure analysis of the hovlinc ribozyme.
Fig. 4: RNA structure and self-cleavage activity of the minimal functional hovlinc ribozyme (83 nt).
Fig. 5: In vivo activity of the hovlinc ribozyme.

Similar content being viewed by others

Data availability

Sequencing data that support the findings of this study have been deposited in GEO with accession number GSE163477. Source data are provided with this paper.

Code availability

Most of the analysis was performed with publicly available software as specified in the main text and Methods. The sequence–structure descriptor files for the corresponding ribozyme types used as input in the RNAMotif program and custom R code used for data processing have been deposited at Github (https://github.com/qifei9/hovlinc_supplements), and are also available at Zenodo (https://doi.org/10.5281/zenodo.4341155).

References

  1. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Gesteland, R. F., Cech, T. & Atkins, J. F. (eds) The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA World 3rd edn, Vol. 43 (Cold Spring Harbor Laboratory Press, 2006).

  4. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Muller, S., Appel, B., Balke, D., Hieronymus, R. & Nubel, C. Thirty-five years of research into ribozymes and nucleic acid catalysis: where do we stand today? F1000Res. 5, F1000 Faculty Rev-1511 (2016).

  6. Lee, C. H., Han, S. R. & Lee, S. W. Therapeutic applications of group I intron-based trans-splicing ribozymes. Wiley Interdiscip. Rev. RNA 9, e1466 (2018).

    Article  PubMed  Google Scholar 

  7. Sett, A., Das, S. & Bora, U. Functional nucleic-acid-based sensors for environmental monitoring. Appl. Biochem. Biotechnol. 174, 1073–1091 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Felletti, M., Stifel, J., Wurmthaler, L. A., Geiger, S. & Hartig, J. S. Twister ribozymes as highly versatile expression platforms for artificial riboswitches. Nat. Commun. 7, 12834 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weinberg, C. E., Weinberg, Z. & Hammann, C. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Res. 47, 9480–9494 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jimenez, R. M., Polanco, J. A. & Luptak, A. Chemistry and biology of self-cleaving ribozymes. Trends Biochem. Sci. 40, 648–661 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Salehi-Ashtiani, K., Luptak, A., Litovchick, A. & Szostak, J. W. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313, 1788–1792 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. de la Pena, M. & Garcia-Robles, I. Intronic hammerhead ribozymes are ultraconserved in the human genome. EMBO Rep. 11, 711–716 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hernandez, A. J. et al. B2 and ALU retrotransposons are self-cleaving ribozymes whose activity is enhanced by EZH2. Proc. Natl Acad. Sci. USA 117, 415–425 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Kapranov, P. et al. The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ un-annotated RNA. BMC Biol. 8, 149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. St Laurent, G. et al. VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer. Genome Biol. 14, R73 (2013).

    Article  Google Scholar 

  16. Bevilacqua, P. C. et al. An ontology for facilitating discussion of catalytic strategies of RNA-cleaving enzymes. ACS Chem. Biol. 14, 1068–1076 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lazorthes, S. et al. A vlincRNA participates in senescence maintenance by relieving H2AZ-mediated repression at the INK4 locus. Nat. Commun. 6, 5971 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Heskett, M. B., Smith, L. G., Spellman, P. & Thayer, M. J. Reciprocal monoallelic expression of ASAR lncRNA genes controls replication timing of human chromosome 6. RNA 26, 724–738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Leary, M. A. et al. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339, 662–667 (2013).

    Article  PubMed  Google Scholar 

  21. Waddell, P. J., Kishino, H. & Ota, R. A phylogenetic foundation for comparative mammalian genomics. Genome Inform. 12, 141–154 (2001).

    CAS  PubMed  Google Scholar 

  22. Kriegs, J. O. et al. Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol. 4, e91 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Murphy, W. J., Pringle, T. H., Crider, T. A., Springer, M. S. & Miller, W. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res. 17, 413–421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishihara, H., Maruyama, S. & Okada, N. Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. Proc. Natl Acad. Sci. USA 106, 5235–5240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goloboff, P. A. et al. Phylogenetic analysis of 73 060 taxa corroborates major eukaryotic groups. Cladistics 25, 211–230 (2009).

    Article  PubMed  Google Scholar 

  26. Raaum, R. L., Sterner, K. N., Noviello, C. M., Stewart, C. B. & Disotell, T. R. Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J. Hum. Evol. 48, 237–257 (2005).

    Article  PubMed  Google Scholar 

  27. Collins, J. A., Irnov, I., Baker, S. & Winkler, W. C. Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev. 21, 3356–3368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kolev, N. G., Hartland, E. I. & Huber, P. W. A manganese-dependent ribozyme in the 3′-untranslated region of Xenopus Vg1 mRNA. Nucleic Acids Res. 36, 5530–5539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Macke, T. J. et al. RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res. 29, 4724–4735 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abeliovich, H. An empirical extremum principle for the Hill coefficient in ligand–protein interactions showing negative cooperativity. Biophys. J. 89, 76–79 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boots, J. L., Canny, M. D., Azimi, E. & Pardi, A. Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme. RNA 14, 2212–2222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilson, T. J. et al. Comparison of the structures and mechanisms of the pistol and hammerhead ribozymes. J. Am. Chem. Soc. 141, 7865–7875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roth, A. et al. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat. Chem. Biol. 10, 56–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Weinberg, Z. et al. New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nat. Chem. Biol. 11, 606–610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bellaousov, S. & Mathews, D. H. ProbKnot: fast prediction of RNA secondary structure including pseudoknots. RNA 16, 1870–1880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ferre-D’Amare, A. R., Zhou, K. & Doudna, J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature 395, 567–574 (1998).

    Article  PubMed  Google Scholar 

  38. Jimenez, R. M., Delwart, E. & Luptak, A. Structure-based search reveals hammerhead ribozymes in the human microbiome. J. Biol. Chem. 286, 7737–7743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren, A., Micura, R. & Patel, D. J. Structure-based mechanistic insights into catalysis by small self-cleaving ribozymes. Curr. Opin. Chem. Biol. 41, 71–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Garneau, N. L., Wilusz, J. & Wilusz, C. J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gaines, C. S., Piccirilli, J. A. & York, D. M. The L-platform/L-scaffold framework: a blueprint for RNA-cleaving nucleic acid enzyme design. RNA 26, 111–125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abdelsayed, M. M. et al. Multiplex aptamer discovery through Apta-Seq and its application to ATP aptamers derived from human-genomic SELEX. ACS Chem. Biol. 12, 2149–2156 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vu, M. M. et al. Convergent evolution of adenosine aptamers spanning bacterial, human, and random sequences revealed by structure-based bioinformatics and genomic SELEX. Chem. Biol. 19, 1247–1254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao, H., Wahlestedt, C. & Kapranov, P. Strategies to annotate and characterize long noncoding RNAs: advantages and pitfalls. Trends Genet. 34, 704–721 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  47. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2017).

    Article  PubMed Central  Google Scholar 

  50. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown, N. P., Leroy, C. & Sander, C. MView: a web-compatible database search or multiple alignment viewer. Bioinformatics 14, 380–381 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Weinberg, Z. & Breaker, R. R. R2R – software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics 12, 3 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.K. thanks the National Natural Science Foundation of China (grant no. 31671382) and the Scientific Research Funds of Huaqiao University. F.Q. thanks the National Natural Science Foundation of China (grant no. 32000462) and the Scientific Research Funds of Huaqiao University. Y.C. thanks the Postgraduates Innovative Fund in Scientific Research from Huaqiao University. K.S.-A. thanks the New York University Abu Dhabi Research Institute and NYUAD Division of Science (funds no. 73 71210 CGSB9 and AD060) for support.

Author information

Authors and Affiliations

Authors

Contributions

P.K. conceived and supervised the project and wrote the manuscript. Y.C. prepared all sequencing libraries, performed all biochemical experiments detecting the in vitro self-cleaving activity of the hovlinc ribozyme, as well as its homologs/mutants under various conditions, and contributed to writing the manuscript. F.Q. analyzed all sequencing data, performed evolutionary and kinetics analysis and contributed to structural analysis of the hovlinc ribozyme and writing the manuscript. F.G. performed experiments addressing the in vivo activity of the hovlinc ribozyme. D.X. contributed to biochemical characterization of the ribozyme. H.C. contributed to the analytical parts at the initial stages of the project. K.S.-A. contributed to the analytical part of the project and to writing the manuscript.

Corresponding authors

Correspondence to Fei Qi or Philipp Kapranov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemical Biology thanks Andrej Luptak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Genomic context of the hovlinc ribozyme.

a, Genomic region corresponding to the plus (+) strand vlincRNA containing the hovlinc ribozyme indicated by the dashed lines. The genome annotations from the GENCODE and lncRNA tracks from the UCSC Genome browser are shown. b, Sequences of the 168 nt hovlinc ribozymes in humans and closely related primates. The red triangle represents the cleavage site and the blue triangles mark the boundaries of the 109 nt fragment containing the catalytic core.

Extended Data Fig. 2 Evolutionary process of the hovlinc ribozyme.

a, in mammals. b, in primates. Colors of the names of groups or individual species indicate the presence of homologous sequences (a) or self-cleavage activity (b) (blue: absent, red: present and gray: not included in the analysis). Numbers in the parentheses represent respectively from left to right numbers of species (1) tested for the self-cleavage activity, (2) possessing homologous sequences and (3) included in the evolutionary analysis. The light coral (a) or pale goldenrod (b) boxes indicate the branches that contain sequences either homologous (a) or highly similar (>90% sequence identity) (b) to the human hovlinc ribozyme, respectively. The red circle at the Homininae node shows the deduced first appearance of the self-cleavage activity with subsequent loss in the gorilla branch (blue). Note, several hypotheses for the basal eutherian divergence exist, and this figure is drawn according to the Exafroplacentalia hypothesis21. The phylogenetic trees are simplified for better illustration, and the branches are not drawn to scale.

Extended Data Fig. 3 Sequence identities of the hovlinc ribozyme homologs to the human sequence.

Asterisks mark the prosimians. The dots on top of bars indicate the status of self-cleavage activity (red: active; blue: inactive; and no dot: untested).

Extended Data Fig. 4 Absence of self-cleavage activity in the non-hominin homologs of the hovlinc ribozyme.

The 34 sequences from 40 species representing 20 simians, 5 prosimians and 15 representatives from the other 9 orders covered by our evolutionary analysis were used as templates for IVT. The IVT products were denatured, renatured, and further incubated with either Mg2+ or 1.5 mM EDTA as described in Methods. The only active homologs from chimpanzee and bonobo are shown in Extended Data Fig. 5a,b, respectively. Identical sequences from multiple species were tested only once.

Source data

Extended Data Fig. 5 Activity of different homologs and a sequence variant of the hovlinc ribozyme.

Denaturing PAGE gels with a time course of cleavage reaction for the chimpanzee (a) and bonobo (b) homologs of the hovlinc ribozyme and the human variant containing SNP rs72720496 (c). The cleavage reactions were incubated for the indicated length of time either in the presence of 6 mM Mg2+ or EDTA at pH 8.

Source data

Extended Data Fig. 6 Effect of pH on the hovlinc ribozyme activity.

a−j, The cleavage reactions incubated for the indicated length of time either in the presence of 6 mM Mg2+ or EDTA at the indicated pH were resolved on the denaturing PAGE gels. k, The raw kobs values (in addition to Fig. 2c which plots log kobs values) at different pH. The activity was either negligible or undetectable at pH 6 and 5 respectively. Conditions of pH >10 could not be tested due to RNA degradation.

Source data

Extended Data Fig. 7 Effect of different cations on the hovlinc ribozyme activity.

a, b, d−f, The cleavage reactions incubated for the indicated length of time either in the presence of the indicated cations: Mn2+ (a), Ca2+ (b), Co2+ (d), Co(NH3)63+ (e), Li+ (f) or EDTA at the indicated pH were resolved on the denaturing PAGE gels. c, Time courses of cleavage reactions performed in the presence of various divalent cations at pH 8. Y-axes show the fraction of cleaved products (Ft) for each time point (X-axes). Each symbol represents average Ft from two replicates, and lines represent fitted curves.

Source data

Extended Data Fig. 8 Mutagenesis test of the stem NS in the in silico predicted structure of the hovlinc ribozyme.

a, A predicted structure of the 109 nt fragment that includes the stem NS demarcated by the box. The red triangle indicates the cleavage site. b, PAGE gels and the sequences of the wild type (WT), individual (m) and compensatory (m/m′) mutants of the NS stem. The IVT products were denatured, renatured and further incubated with 6 mM Mg2+ (“+”) or without Mg2+ but with 6 mM EDTA (“−”) at pH 9 as indicated in Methods.

Source data

Extended Data Fig. 9 Activity of the minimal functional hovlinc ribozyme (83 nt).

The cleavage reactions incubated for the indicated length of time at pH 8 (a) and 9 (b) either in the presence of 6 mM Mg2+ or EDTA at the indicated pH were resolved on the denaturing PAGE gels.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and the legend for Dataset.

Reporting Summary

Supplementary Dataset

CPM values and ratios for the 3,672 positions common to at least seven of nine libraries.

Source data

Source Data Fig. 1

Unprocessed bioanalyzer electropherogram and PAGE gels for Fig. 1b,d.

Source Data Fig. 1

Statistical source data for Fig. 1c,e.

Source Data Fig. 2

Unprocessed PAGE gels for Fig. 2a.

Source Data Fig. 2

Statistical source data for Fig. 2b−f.

Source Data Fig. 3

Unprocessed PAGE gels for Fig. 3b−h.

Source Data Fig. 4

Unprocessed PAGE gels for Fig. 4a.

Source Data Fig. 4

Statistical source data for Fig. 4c.

Source Data Fig. 5

Statistical source data for Fig. 5b.

Source Data Extended Data Fig. 4

Unprocessed PAGE gels for Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Unprocessed PAGE gels for Extended Data Fig. 5.

Source Data Extended Data Fig. 6

Unprocessed PAGE gels for Extended Data Fig. 6a−j.

Source Data Extended Data Fig. 6

Statistical source for Extended Data Fig. 6k.

Source Data Extended Data Fig. 7

Unprocessed PAGE gels for Extended Data Fig. 7a,b,d−f.

Source Data Extended Data Fig. 7

Statistical source for Extended Data Fig. 7c.

Source Data Extended Data Fig. 8

Unprocessed PAGE gels for Extended Data Fig. 8b.

Source Data Extended Data Fig. 9

Unprocessed PAGE gels for Extended Data Fig. 9a,b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Qi, F., Gao, F. et al. Hovlinc is a recently evolved class of ribozyme found in human lncRNA. Nat Chem Biol 17, 601–607 (2021). https://doi.org/10.1038/s41589-021-00763-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00763-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing