Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors

Abstract

Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological and pathophysiological conditions, but its use as a redox marker suffers from the lack of tools to detect and quantify MetO within cells. In this work, we created a pair of complementary stereospecific genetically encoded mechanism-based ratiometric fluorescent sensors of MetO by inserting a circularly permuted yellow fluorescent protein between yeast methionine sulfoxide reductases and thioredoxins. The two sensors, respectively named MetSOx and MetROx for their ability to detect S and R forms of MetO, were used for targeted analysis of protein oxidation, regulation and repair as well as for monitoring MetO in bacterial and mammalian cells, analyzing compartment-specific changes in MetO and examining responses to physiological stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and spectra of MetSOx and MetROx sensors.
Figure 2: Response of recombinant MetSOx and MetROx to DTT and various oxidants.
Figure 3: Characterization of MetSOx and MetROx sensors in E. coli.
Figure 4: MetSOx and MetROx oxidation levels and the response to sodium hypochlorite in E. coli.
Figure 5: Characterization of MetROx in HEK293 cells.
Figure 6: MetROx response in subcellular compartments and physiological stimuli in HEK293 cells.

Similar content being viewed by others

References

  1. D'Autréaux, B. & Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    Article  Google Scholar 

  2. Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15 (2011).

    Article  CAS  Google Scholar 

  3. Meyer, A.J. & Dick, T.P. Fluorescent protein-based redox probes. Antioxid. Redox Signal. 13, 621–650 (2010).

    Article  CAS  Google Scholar 

  4. Maron, B.A. & Michel, T. Subcellular localization of oxidants and redox modulation of endothelial nitric oxide synthase. Circ. J. 76, 2497–2512 (2012).

    Article  CAS  Google Scholar 

  5. Nagai, T., Sawano, A., Park, E.S. & Miyawaki, A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. USA 98, 3197–3202 (2001).

    Article  CAS  Google Scholar 

  6. Belousov, V.V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).

    Article  CAS  Google Scholar 

  7. Malinouski, M., Zhou, Y., Belousov, V.V., Hatfield, D.L. & Gladyshev, V.N. Hydrogen peroxide probes directed to different cellular compartments. PLoS ONE 6, e14564 (2011).

    Article  CAS  Google Scholar 

  8. Niethammer, P., Grabher, C., Look, A.T. & Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).

    Article  CAS  Google Scholar 

  9. Jin, B.Y., Sartoretto, J.L., Gladyshev, V.N. & Michel, T. Endothelial nitric oxide synthase negatively regulates hydrogen peroxide–stimulated AMP-activated protein kinase in endothelial cells. Proc. Natl. Acad. Sci. USA 106, 17343–17348 (2009).

    Article  CAS  Google Scholar 

  10. Østergaard, H., Henriksen, A., Hansen, F.G. & Winther, J.R. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein. EMBO J. 20, 5853–5862 (2001).

    Article  Google Scholar 

  11. Hanson, G.T. et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279, 13044–13053 (2004).

    Article  CAS  Google Scholar 

  12. Morgan, B. et al. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat. Chem. Biol. 9, 119–125 (2013).

    Article  CAS  Google Scholar 

  13. Le, D.T. et al. Analysis of methionine/selenomethionine oxidation and methionine sulfoxide reductase function using methionine-rich proteins and antibodies against their oxidized forms. Biochemistry 47, 6685–6694 (2008).

    Article  CAS  Google Scholar 

  14. Wehr, N.B. & Levine, R.L. Wanted and wanting: antibody against methionine sulfoxide. Free Radic. Biol. Med. 53, 1222–1225 (2012).

    Article  CAS  Google Scholar 

  15. Brot, N., Weissbach, L., Werth, J. & Weissbach, H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc. Natl. Acad. Sci. USA 78, 2155–2158 (1981).

    Article  CAS  Google Scholar 

  16. Grimaud, R. et al. Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J. Biol. Chem. 276, 48915–48920 (2001).

    Article  CAS  Google Scholar 

  17. Kryukov, G.V., Kumar, R.A., Koc, A., Sun, Z. & Gladyshev, V.N. Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc. Natl. Acad. Sci. USA 99, 4245–4250 (2002).

    Article  CAS  Google Scholar 

  18. Tarrago, L. & Gladyshev, V.N. Recharging oxidative protein repair: catalysis by methionine sulfoxide reductases towards their amino acid, protein, and model substrates. Biochemistry (Mosc.) 77, 1097–1107 (2012).

    Article  CAS  Google Scholar 

  19. Boschi-Muller, S., Olry, A., Antoine, M. & Branlant, G. The enzymology and biochemistry of methionine sulfoxide reductases. Biochim. Biophys. Acta 1703, 231–238 (2005).

    Article  CAS  Google Scholar 

  20. Motohashi, K., Kondoh, A., Stumpp, M.T. & Hisabori, T. Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc. Natl. Acad. Sci. USA 98, 11224–11229 (2001).

    Article  CAS  Google Scholar 

  21. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    Article  CAS  Google Scholar 

  22. Bilan, D.S. et al. HyPer-3: a genetically encoded H2O2 probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem. Biol. 8, 535–542 (2013).

    Article  CAS  Google Scholar 

  23. Hung, R.-J., Spaeth, C.S., Yesilyurt, H.G. & Terman, J.R. SelR reverses Mical-mediated oxidation of actin to regulate F-actin dynamics. Nat. Cell Biol. 15, 1445–1454 (2013).

    Article  CAS  Google Scholar 

  24. Lee, B.C. et al. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol. Cell 51, 397–404 (2013).

    Article  CAS  Google Scholar 

  25. St. John, G. et al. Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc. Natl. Acad. Sci. USA 98, 9901–9906 (2001).

    Article  CAS  Google Scholar 

  26. Tarrago, L., Kaya, A., Weerapana, E., Marino, S.M. & Gladyshev, V.N. Methionine sulfoxide reductases preferentially reduce unfolded oxidized proteins and protect cells from oxidative protein unfolding. J. Biol. Chem. 287, 24448–24459 (2012).

    Article  CAS  Google Scholar 

  27. Ma, X.-X. et al. Structural plasticity of the thioredoxin recognition site of yeast methionine S-sulfoxide reductase Mxr1. J. Biol. Chem. 286, 13430–13437 (2011).

    Article  CAS  Google Scholar 

  28. Berg, J., Hung, Y.P. & Yellen, G. A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat. Methods 6, 161–166 (2009).

    Article  CAS  Google Scholar 

  29. Luo, S. & Levine, R.L. Methionine in proteins defends against oxidative stress. FASEB J. 23, 464–472 (2009).

    Article  CAS  Google Scholar 

  30. Tantama, M., Hung, Y.P. & Yellen, G. in Progress in Brain Research Vol. 196 (eds. Knöpfel, T. & Boyden, E.S.) 235–263 (Elsevier, 2012).

  31. Schwarzländer, M. et al. The 'mitoflash' probe cpYFP does not respond to superoxide. Nature 514, E12–E14 (2014).

    Article  Google Scholar 

  32. Hung, Y.P., Albeck, J.G., Tantama, M. & Yellen, G. Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab. 14, 545–554 (2011).

    Article  CAS  Google Scholar 

  33. Mishina, N.M. et al. in Methods in Enzymology Vol. 526 (eds. Cadenas, E. & Packer, L.) 175–187 (Academic Press, 2013).

  34. Poburko, D., Santo-Domingo, J. & Demaurex, N. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J. Biol. Chem. 286, 11672–11684 (2011).

    Article  CAS  Google Scholar 

  35. Ranaivoson, F.M. et al. Methionine sulfoxide reductase B displays a high level of flexibility. J. Mol. Biol. 394, 83–93 (2009).

    Article  CAS  Google Scholar 

  36. Tarrago, L. et al. Plant thioredoxin CDSP32 regenerates 1-cys methionine sulfoxide reductase B activity through the direct reduction of sulfenic acid. J. Biol. Chem. 285, 14964–14972 (2010).

    Article  CAS  Google Scholar 

  37. Vieira Dos Santos, C., Cuiné, S., Rouhier, N. & Rey, P. The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol. 138, 909–922 (2005).

    Article  Google Scholar 

  38. Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R. & Piston, D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).

    Article  CAS  Google Scholar 

  39. Tarrago, L. et al. Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins. J. Biol. Chem. 284, 18963–18971 (2009).

    Article  CAS  Google Scholar 

  40. Chung, C.T., Niemela, S.L. & Miller, R.H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA 86, 2172–2175 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Rey (Laboratoire d'Ecophysiologie Moléculaire des Plantes, UMR7265 CEA-CNRS-Aix-Marseille Université) for the kind gift of dabsyl-MetO and V. Belousov and V. Verkhusha for discussion. This study was supported by US National Institutes of Health grants AG021518 and GM065204 to V.N.G. and HL48743 to T.M.

Author information

Authors and Affiliations

Authors

Contributions

L.T. designed, created and characterized the sensors; performed experiments with E. coli cells; analyzed the data and wrote the paper. Z.P. performed experiments with HEK293 cells, analyzed the data and wrote the paper. B.C.L. performed experiments with MICAL1-oxidized actin and analyzed the data. T.M. contributed reagents and tools and analyzed the data. V.N.G. designed the sensors, supervised the research and wrote the paper.

Corresponding author

Correspondence to Vadim N Gladyshev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–15 and Supplementary Tables 1–4. (PDF 1887 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarrago, L., Péterfi, Z., Lee, B. et al. Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nat Chem Biol 11, 332–338 (2015). https://doi.org/10.1038/nchembio.1787

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1787

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing