Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An enzymatic [4+2] cyclization cascade creates the pentacyclic core of pyrroindomycins

Abstract

The [4+2] cycloaddition remains one of the most intriguing transformations in synthetic and natural products chemistry. In nature, however, there are remarkably few enzymes known to have this activity. We herein report an unprecedented enzymatic [4+2] cyclization cascade that has a central role in the biosynthesis of pyrroindomycins, which are pentacyclic spirotetramate natural products. Beginning with a linear intermediate that contains two pairs of 1,3-diene and alkene groups, the dedicated cyclases PyrE3 and PyrI4 act in tandem to catalyze the formation of two cyclohexene rings in the dialkyldecalin system and the tetramate spiro-conjugate of the molecules. The two cyclizations are completely enzyme dependent and proceed in a regio- and stereoselective manner to establish the enantiomerically pure pentacyclic core. Analysis of a related spirotetronate pathway confirms that homologs are functionally exchangeable, establishing the generality of these findings and explaining how nature creates diverse active molecules with similar rigid scaffolds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spirotetramate and spirotetronate natural products and associated biosynthetic pathway.
Figure 2: Characterization of the dialkyldecalin synthase PyrE3 and the spiro-conjugate synthase PyrI4, which respectively represent two new types of cyclases catalyzing [4+2] cycloaddition reactions.
Figure 3: Validation of the functional identity of ChlE3 and ChlL to PyrE3 and PyrI4, respectively.
Figure 4: Known (putative) types of [4+2] cyclases and associated conversions in the pathways.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ding, W. et al. Pyrroindomycins, novel antibiotics produced by Streptomyces rugosporus sp. LL-42D005. I. Isolation and structure determination. J. Antibiot. (Tokyo) 47, 1250–1257 (1994).

    Article  CAS  Google Scholar 

  2. Singh, M.P. et al. Pyrroindomycins, novel antibiotics produced by Streptomyces rugosporus LL-42D005. II. Biological activities. J. Antibiot. (Tokyo) 47, 1258–1265 (1994).

    Article  CAS  Google Scholar 

  3. Vieweg, L., Reichau, S., Schobert, R., Leadlay, P.F. & Sussmuth, R.D. Recent advances in the field of bioactive tetronates. Nat. Prod. Rep. 31, 1554–1584 (2014).

    Article  CAS  Google Scholar 

  4. Oikawa, H. & Tokiwano, T. Enzymatic catalysis of the Diels-Alder reaction in the biosynthesis of natural products. Nat. Prod. Rep. 21, 321–352 (2004).

    Article  CAS  Google Scholar 

  5. Kim, H.J., Ruszczycky, M.W. & Liu, H.W. Current developments and challenges in the search for a naturally selected Diels-Alderase. Curr. Opin. Chem. Biol. 16, 124–131 (2012).

    Article  CAS  Google Scholar 

  6. Kelly, W.L. Intramolecular cyclizations of polyketide biosynthesis: mining for a “Diels-Alderase”? Org. Biomol. Chem. 6, 4483–4493 (2008).

    Article  CAS  Google Scholar 

  7. Townsend, C.A.A. “Diels-Alderase” at last. ChemBioChem 12, 2267–2269 (2011).

    Article  CAS  Google Scholar 

  8. Kelly, W.L. Biochemistry: life imitates art. Nature 473, 35–36 (2011).

    Article  CAS  Google Scholar 

  9. Wu, Q., Wu, Z., Qu, X. & Liu, W. Insights into pyrroindomycin biosynthesis reveal a uniform paradigm for tetramate/tetronate formation. J. Am. Chem. Soc. 134, 17342–17345 (2012).

    Article  CAS  Google Scholar 

  10. Jia, X.Y. et al. Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem. Biol. 13, 575–585 (2006).

    Article  CAS  Google Scholar 

  11. Fang, J. et al. Cloning and characterization of the tetrocarcin A gene cluster from Micromonospora chalcea NRRL 11289 reveals a highly conserved strategy for tetronate biosynthesis in spirotetronate antibiotics. J. Bacteriol. 190, 6014–6025 (2008).

    Article  CAS  Google Scholar 

  12. Zhang, H. et al. Elucidation of the kijanimicin gene cluster: insights into the biosynthesis of spirotetronate antibiotics and nitrosugars. J. Am. Chem. Soc. 129, 14670–14683 (2007).

    Article  CAS  Google Scholar 

  13. Li, S. et al. Dissecting glycosylation steps in lobophorin biosynthesis implies an iterative glycosyltransferase. Org. Lett. 15, 1374–1377 (2013).

    Article  CAS  Google Scholar 

  14. Staunton, J. & Weissman, K.J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  Google Scholar 

  15. Walsh, C.T. Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303, 1805–1810 (2004).

    Article  CAS  Google Scholar 

  16. Weissman, K.J. & Leadlay, P.F. Combinatorial biosynthesis of reduced polyketides. Nat. Rev. Microbiol. 3, 925–936 (2005).

    Article  CAS  Google Scholar 

  17. Sun, Y. et al. In vitro reconstruction of tetronate RK-682 biosynthesis. Nat. Chem. Biol. 6, 99–101 (2010).

    Article  CAS  Google Scholar 

  18. Kanchanabanca, C. et al. Unusual acetylation-elimination in the formation of tetronate antibiotics. Angew. Chem. Int. Ed. Engl. 52, 5785–5788 (2013).

    Article  CAS  Google Scholar 

  19. Koskiniemi, H. et al. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis. J. Mol. Biol. 372, 633–648 (2007).

    Article  CAS  Google Scholar 

  20. Kallio, P. et al. Tracing the evolution of angucyclinone monooxygenases: structural determinants for C-12b hydroxylation and substrate inhibition in PgaE. Biochemistry 52, 4507–4516 (2013).

    Article  CAS  Google Scholar 

  21. Wang, P. et al. Uncovering the enzymes that catalyze the final steps in oxytetracycline biosynthesis. J. Am. Chem. Soc. 135, 7138–7141 (2013).

    Article  CAS  Google Scholar 

  22. Gottardi, E.M. et al. Abyssomicin biosynthesis: formation of an unusual polyketide, antibiotic-feeding studies and genetic analysis. ChemBioChem 12, 1401–1410 (2011).

    Article  CAS  Google Scholar 

  23. He, H.Y. et al. Quartromicin biosynthesis: two alternative polyketide chains produced by one polyketide synthase assembly line. Chem. Biol. 19, 1313–1323 (2012).

    Article  CAS  Google Scholar 

  24. Bisang, C. et al. A chain initiation factor common to both modular and aromatic polyketide synthases. Nature 401, 502–505 (1999).

    Article  CAS  Google Scholar 

  25. Reeves, C.D. et al. Alteration of the substrate specificity of a modular polyketide synthase acyltransferase domain through site-specific mutations. Biochemistry 40, 15464–15470 (2001).

    Article  CAS  Google Scholar 

  26. Keatinge-Clay, A.T. A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem. Biol. 14, 898–908 (2007).

    Article  CAS  Google Scholar 

  27. Wu, J., Zaleski, T.J., Valenzano, C., Khosla, C. & Cane, D.E. Polyketide double bond biosynthesis. Mechanistic analysis of the dehydratase-containing module 2 of the picromycin/methylmycin synthase. J. Am. Chem. Soc. 127, 17393–17404 (2005).

    Article  CAS  Google Scholar 

  28. Kwan, D.H. et al. Prediction and manipulation of the stereochemistry of enoylreduction in modular polyketide synthases. Chem. Biol. 15, 1231–1240 (2008).

    Article  CAS  Google Scholar 

  29. Bornemann, S. Flavoenzymes that catalyse reactions with no net redox change. Nat. Prod. Rep. 19, 761–772 (2002).

    Article  CAS  Google Scholar 

  30. Hashimoto, T. et al. Biosynthesis of versipelostatin: identification of an enzyme-catalyzed [4+2]-cycloaddition required for macrocyclization of spirotetronate-containing polyketides. J. Am. Chem. Soc. 137, 572–575 (2015).

    Article  CAS  Google Scholar 

  31. Ose, T. et al. Insight into a natural Diels-Alder reaction from the structure of macrophomate synthase. Nature 422, 185–189 (2003).

    Article  CAS  Google Scholar 

  32. Oikawa, H., Katayama, K., Suzuki, Y. & Ichihara, A. Enzymatic activity catalysing exo-selective Diels-Alder reaction in solanapyrone biosynthesis. J. Chem. Soc. Chem. Commun.##1321–1322 (1995).

  33. Auclair, K. et al. Lovastatin nonaketide synthase catalyzes an intramolecular Diels-Alder reaction of a substrate analogue. J. Am. Chem. Soc. 122, 11519–11520 (2000).

    Article  CAS  Google Scholar 

  34. Ma, S.M. et al. Complete reconstitution of a highly reducing iterative polyketide synthase. Science 326, 589–592 (2009).

    Article  CAS  Google Scholar 

  35. Kim, R.R. et al. Mechanistic insights on riboflavin synthase inspired by selective binding of the 6,7-dimethyl-8-ribityllumazine exomethylene anion. J. Am. Chem. Soc. 132, 2983–2990 (2010).

    Article  CAS  Google Scholar 

  36. Kim, H.J., Ruszczycky, M.W., Choi, S.H., Liu, Y.N. & Liu, H.W. Enzyme-catalysed [4+2] cycloaddition is a key step in the biosynthesis of spinosyn A. Nature 473, 109–112 (2011).

    Article  CAS  Google Scholar 

  37. Carey, F.A. in Organic Chemistry 4th edn. 365–397 (Mcgraw-Hill Higher Education, New York, 2000).

  38. Roush, W.R., Reilly, M.L., Koyama, K. & Brown, B.B. A formal total synthesis of (+)-tetronolide, the aglycon of the tetrocarcins: enantio-and diastereoselective syntheses of the octahydronaphthalene (bottom-half) and spirotetronate (top-half) fragments. J. Org. Chem. 62, 8708–8721 (1997).

    Article  CAS  Google Scholar 

  39. Roush, W.R. & Sciotti, R.J. Enantioselective total synthesis of (−)-chlorothricolide via the tandem inter- and intramolecular Diels−Alder reaction of a hexaenoate intermediate. J. Am. Chem. Soc. 120, 7411–7419 (1998).

    Article  CAS  Google Scholar 

  40. Takahashi, S. et al. Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation. Nat. Chem. Biol. 7, 461–468 (2011).

    Article  CAS  Google Scholar 

  41. Sun, P. et al. Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of AveC. J. Am. Chem. Soc. 135, 1540–1548 (2013).

    Article  CAS  Google Scholar 

  42. Green, M.R. & Sambrook, J. Molecular Cloning: a Laboratory Manual 4th edn. (Cold Spring Harbor Laboratory Press, 2012).

  43. Keiser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. & Hopwood, D.A. Practical Streptomyces Genetics (John Innes Foundation, 2000).

  44. Frisch, M.J. et al. Gaussian 09, Revision B.01 (Gaussian, Inc., Wallingford CT, 2010).

  45. Stephens, P.J. & Harada, N. ECD Cotton effect approximated by the Gaussian curve and other methods. Chirality 22, 229–233 (2010).

    CAS  PubMed  Google Scholar 

  46. Varetto, U. MOLEKEL 5.4. (Swiss National Supercomputing Centre: Manno, Switzerland, 2009).

  47. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Natural Science Foundation of China (91213303, 81202453, 31430005 and 91413101), STCSM (14JC1407700 and 13XD1404500), the Ministry of Science and Technology of China (2012AA02A706) and the National Research Foundation (OTKA K105871) of Hungary.

Author information

Authors and Affiliations

Authors

Contributions

Z.T., Z.W., H.Z., X.J. and D.C. performed the in vivo investigations. Z.T., Y.Y., S.Z., F.Y. and Q.Z. conducted the in vitro enzymatic investigations. P.S., Y.Y. and Z.W. characterized the chemical compounds. A.M. and T.K. conducted the DFT conformational analysis and TDDFT-ECD calculation. Z.T. performed the sequence analysis. Z.T., P.S. and W.L. analyzed the data and wrote the manuscript. W.L. directed the research.

Corresponding author

Correspondence to Wen Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Notes 1–3, Supplementary Figures 1–18 and Supplementary Tables 1–9. (PDF 6902 kb)

Supplementary Data Set

Crystallographic data for 3 (TXT 1823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Sun, P., Yan, Y. et al. An enzymatic [4+2] cyclization cascade creates the pentacyclic core of pyrroindomycins. Nat Chem Biol 11, 259–265 (2015). https://doi.org/10.1038/nchembio.1769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing