Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A redox switch shapes the Lon protease exit pore to facultatively regulate proteolysis

Abstract

The Lon AAA+ protease degrades damaged or misfolded proteins in its intramolecular chamber. Its activity must be precisely controlled, but the mechanism by which Lon is regulated in response to different environments is not known. Facultative anaerobes in the Enterobacteriaceae family, mostly symbionts and pathogens, encounter both anaerobic and aerobic environments inside and outside the host′s body, respectively. The bacteria characteristically have two cysteine residues on the Lon protease (P) domain surface that unusually form a disulfide bond. Here we show that the cysteine residues act as a redox switch of Lon. Upon disulfide bond reduction, the exit pore of the P-domain ring narrows by 30%, thus interrupting product passage and decreasing activity by 80%; disulfide bonding by oxidation restores the pore size and activity. The redox switch (E°′ = −227 mV) is appropriately tuned to respond to variation between anaerobic and aerobic conditions, thus optimizing the cellular proteolysis level for each environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxidized and reduced forms of the Lon P-domain ring.
Figure 2: Structural basis of the size change in the exit pore.
Figure 3: Redox control of the Lon activity.
Figure 4: Identification of the redox switch cysteine residues.
Figure 5: In vivo function of the Lon redox switch.
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Goldberg, A.L., Moerschell, R.P., Chung, C.H. & Maurizi, M.R. ATP-dependent protease La (Lon) from Escherichia coli. Methods Enzymol. 244, 350–375 (1994).

    Article  CAS  Google Scholar 

  2. Van Melderen, L. & Aertsen, A. Regulation and quality control by Lon-dependent proteolysis. Res. Microbiol. 160, 645–651 (2009).

    Article  CAS  Google Scholar 

  3. Sauer, R.T. & Baker, T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80, 587–612 (2011).

    Article  CAS  Google Scholar 

  4. Waxman, L. & Goldberg, A.L. Selectivity of intracellular proteolysis: protein substrates activate the ATP-dependent protease (La). Science 232, 500–503 (1986).

    Article  CAS  Google Scholar 

  5. Goff, S.A. & Goldberg, A.L. An increased content of protease La, the lon gene product, increases protein degradation and blocks growth in Escherichia coli. J. Biol. Chem. 262, 4508–4515 (1987).

    CAS  PubMed  Google Scholar 

  6. Christensen, S.K. et al. Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM-yoeB toxin-antitoxin system. Mol. Microbiol. 51, 1705–1717 (2004).

    Article  CAS  Google Scholar 

  7. Phillips, T.A., VanBogelen, R.A. & Neidhardt, F.C. lon gene product of Escherichia coli is a heat-shock protein. J. Bacteriol. 159, 283–287 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111–122 (2007).

    Article  CAS  Google Scholar 

  9. Rotanova, T.V. et al. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci. 15, 1815–1828 (2006).

    Article  CAS  Google Scholar 

  10. Cha, S.-S. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J. 29, 3520–3530 (2010).

    Article  CAS  Google Scholar 

  11. Maurizi, M.R. Degradation in vitro of bacteriophage λN protein by Lon protease from Escherichia coli. J. Biol. Chem. 262, 2696–2703 (1987).

    CAS  PubMed  Google Scholar 

  12. Van Melderen, L. et al. ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions. J. Biol. Chem. 271, 27730–27738 (1996).

    Article  CAS  Google Scholar 

  13. Nishii, W., Maruyama, T., Matsuoka, R., Muramatsu, T. & Takahashi, K. The unique sites in SulA protein preferentially cleaved by ATP-dependent Lon protease from Escherichia coli. Eur. J. Biochem. 269, 451–457 (2002).

    Article  CAS  Google Scholar 

  14. Nishii, W. et al. Cleavage mechanism of ATP-dependent Lon protease toward ribosomal S2 protein. FEBS Lett. 579, 6846–6850 (2005).

    Article  CAS  Google Scholar 

  15. Botos, I. et al. Crystal structure of the AAA+ α domain of E. coli Lon protease at 1.9 Å resolution. J. Struct. Biol. 146, 113–122 (2004).

    Article  CAS  Google Scholar 

  16. Botos, I. et al. The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J. Biol. Chem. 279, 8140–8148 (2004).

    Article  CAS  Google Scholar 

  17. García-Nafría, J. et al. Structure of the catalytic domain of the human mitochondrial Lon protease: proposed relation of oligomer formation and activity. Protein Sci. 19, 987–999 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Li, M. et al. Crystal structure of the N-terminal domain of E. coli Lon protease. Protein Sci. 14, 2895–2900 (2005).

    Article  CAS  Google Scholar 

  19. Gilbert, H.F. Molecular and cellular aspects of thiol-disulfide exchange. Adv. Enzymol. 63, 69–172 (1990).

    CAS  PubMed  Google Scholar 

  20. Waxman, L. & Goldberg, A.L. Protease La, the lon gene product, cleaves specific fluorogenic peptides in an ATP-dependent reaction. J. Biol. Chem. 260, 12022–12028 (1985).

    CAS  PubMed  Google Scholar 

  21. Kim, S.O. et al. OxyR: a molecular code for redox-related signaling. Cell 109, 383–396 (2002).

    Article  CAS  Google Scholar 

  22. Goldberg, A.L. & Waxman, L. The role of ATP hydrolysis in the breakdown of proteins and peptides by protease La from Escherichia coli. J. Biol. Chem. 260, 12029–12034 (1985).

    CAS  PubMed  Google Scholar 

  23. Thomas-Wohlever, J. & Lee, I. Kinetic characterization of the peptidase activity of Escherichia coli Lon reveals the mechanistic similarities in ATP-dependent hydrolysis of peptide and protein substrates. Biochemistry 41, 9418–9425 (2002).

    Article  CAS  Google Scholar 

  24. Lee, I., Berdis, A.J. & Suzuki, C.K. Recent developments in the mechanistic enzymology of the ATP-dependent Lon protease from Escherichia coli: highlights from kinetic studies. Mol. Biosyst. 2, 477–483 (2006).

    Article  CAS  Google Scholar 

  25. Fischer, H. & Glockshuber, R. ATP hydrolysis is not stoichiometrically linked with proteolysis in the ATP-dependent protease La from Escherichia coli. J. Biol. Chem. 268, 22502–22507 (1993).

    CAS  PubMed  Google Scholar 

  26. Kroh, H.E. & Simon, L.D. Increased ATP-dependent proteolytic activity in lon-deficient Escherichia coli strains lacking the DnaK protein. J. Bacteriol. 173, 2691–2695 (1991).

    Article  CAS  Google Scholar 

  27. Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P. & Bukau, B. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40, 397–413 (2001).

    Article  CAS  Google Scholar 

  28. Howard-Flanders, P., Simson, E. & Theriot, L. A locus that controls filament formation and sensitivity to radiation in Escherichia coli K-12. Genetics 49, 237–246 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilson, M. Bacteriology of Humans: an Ecological Perspective (Wiley-Blackwell, 2008).

  30. Aslund, F., Berndt, K.D. & Holmgren, A. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J. Biol. Chem. 272, 30780–30786 (1997).

    Article  CAS  Google Scholar 

  31. Zheng, M., Aslund, F. & Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721 (1998).

    Article  CAS  Google Scholar 

  32. Jakob, U., Muse, W., Eser, M. & Bardwell, J.C. Chaperone activity with a redox switch. Cell 96, 341–352 (1999).

    Article  CAS  Google Scholar 

  33. Miller, R.A. & Britigan, B.E. Role of oxidants in microbial pathophysiology. Clin. Microbiol. Rev. 10, 1–18 (1997).

    Article  CAS  Google Scholar 

  34. Choi, H. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103–113 (2001).

    Article  CAS  Google Scholar 

  35. Green, J. & Paget, M.S. Bacterial redox sensors. Nat. Rev. Microbiol. 2, 954–966 (2004).

    Article  CAS  Google Scholar 

  36. Ilbert, M. et al. The redox-switch domain of Hsp33 functions as dual stress sensor. Nat. Struct. Mol. Biol. 14, 556–563 (2007).

    Article  CAS  Google Scholar 

  37. Antelmann, H. & Helmann, J.D. Thiol-based redox switches and gene regulation. Antioxid. Redox Signal. 14, 1049–1063 (2011).

    Article  CAS  Google Scholar 

  38. Wedemeyer, W.J., Welker, E., Narayan, M. & Scheraga, H.A. Disulfide bonds and protein folding. Biochemistry 39, 4207–4216 (2000).

    Article  CAS  Google Scholar 

  39. Schmidt, B., Ho, L. & Hogg, P.J. Allosteric disulfide bonds. Biochemistry 45, 7429–7433 (2006).

    Article  CAS  Google Scholar 

  40. Suzuki, C.K. et al. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci. 22, 118–123 (1997).

    Article  CAS  Google Scholar 

  41. Harpaz, Y., Gerstein, M. & Chothia, C. Volume changes on protein folding. Structure 2, 641–649 (1994).

    Article  CAS  Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  43. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  44. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  45. Vaguine, A.A., Richelle, J. & Wodak, S.J. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. D Biol. Crystallogr. 55, 191–205 (1999).

    Article  CAS  Google Scholar 

  46. Collaborative Computational Project, No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  47. DeLano, W.L. The PyMOL Molecular Graphics System. (2002).

  48. Kornberg, A., Scott, J.F. & Bertsch, L.L. ATP utilization by rep protein in the catalytic separation of DNA strands at a replicating fork. J. Biol. Chem. 253, 3298–3304 (1978).

    CAS  PubMed  Google Scholar 

  49. Frieden, C. Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept. J. Biol. Chem. 245, 5788–5799 (1970).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Nishii for assistance with the enzyme preparation and F. Amano (Osaka University of Pharmaceutical Science) for providing the E. coli AB1157 and JK405 strains. We would like to thank the beamline staff at BL26B1 and BL26B2 of SPring-8 for assistance during data collection. We wish to thank T. Nakagawa (UNISOKU, Co., Ltd.) for assistance with stopped-flow experiments. We thank A. Ishii, K. Ake, T. Imada and T. Nakayama for assistance with manuscript preparation. This work was supported in part by a Grant-in-Aid for Scientific Research (17770116) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (to W.N.). This work was also supported in part by the Targeted Proteins Research Program (TPRP) and the Platform for Drug Discovery, Informatics, and Structural Life Science, both from MEXT (to S.Y.).

Author information

Authors and Affiliations

Authors

Contributions

W.N. and S.Y. designed this study, interpreted the data and wrote the manuscript. W.N. performed biochemical and physiological experiments. M.K.-N. carried out the crystallographic study. T.T. and M.S. supported crystallization. T.M. contributed to plasmid construction. M.K. and H.K. contributed to stopped-flow analysis.

Corresponding authors

Correspondence to Wataru Nishii or Shigeyuki Yokoyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–17 and Supplementary Tables 1–4. (PDF 11968 kb)

Supplementary Video

Redox switch of Lon. Structural changes in the exit pore of Lon between the oxidized and reduced forms are shown. (MOV 6554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishii, W., Kukimoto-Niino, M., Terada, T. et al. A redox switch shapes the Lon protease exit pore to facultatively regulate proteolysis. Nat Chem Biol 11, 46–51 (2015). https://doi.org/10.1038/nchembio.1688

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1688

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology