Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible [4Fe-3S] cluster morphing in an O2-tolerant [NiFe] hydrogenase

Abstract

Hydrogenases catalyze the reversible oxidation of H2 into protons and electrons and are usually readily inactivated by O2. However, a subgroup of the [NiFe] hydrogenases, including the membrane-bound [NiFe] hydrogenase from Ralstonia eutropha, has evolved remarkable tolerance toward O2 that enables their host organisms to utilize H2 as an energy source at high O2. This feature is crucially based on a unique six cysteine-coordinated [4Fe-3S] cluster located close to the catalytic center, whose properties were investigated in this study using a multidisciplinary approach. The [4Fe-3S] cluster undergoes redox-dependent reversible transformations, namely iron swapping between a sulfide and a peptide amide N. Moreover, our investigations unraveled the redox-dependent and reversible occurence of an oxygen ligand located at a different iron. This ligand is hydrogen bonded to a conserved histidine that is essential for H2 oxidation at high O2. We propose that these transformations, reminiscent of those of the P-cluster of nitrogenase, enable the consecutive transfer of two electrons within a physiological potential range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cartoon and crystal structure of the MBH from R. eutropha.
Figure 2: 15N Davies-ENDOR on as-isolated MBH indicating a covalent bond between Fe4 and the peptide amide N from C20S found in the superoxidized state.
Figure 3: An oxygen ligand is bound to Fe1 of the [4Fe-3S] cluster in the as-isolated (superoxidized) state.
Figure 4: Detection of the Fe1-bound OH ligand by RR and pulsed EPR spectroscopy.
Figure 5: Redox-dependent structural changes within the [4Fe-3S] cluster.
Figure 6: Redox-dependent structural changes occurring during high potential redox transition.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Fontecilla-Camps, J.C., Volbeda, A., Cavazza, C. & Nicolet, Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Fritsch, J., Lenz, O. & Friedrich, B. Structure, function and biosynthesis of O2-tolerant hydrogenases. Nat. Rev. Microbiol. 11, 106–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz, E., Fritsch, J. & Friedrich, B. in The Prokaryotes (eds. Eugene Rosenberg et al.) 119–199 (Springer Berlin Heidelberg, 2013).

  4. Lenz, O. et al. H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. ChemPhysChem 11, 1107–1119 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Bernhard, M., Benelli, B., Hochkoeppler, A., Zannoni, D. & Friedrich, B. Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16. Eur. J. Biochem. 248, 179–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Frielingsdorf, S., Schubert, T., Pohlmann, A., Lenz, O. & Friedrich, B. A trimeric supercomplex of the oxygen-tolerant membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha H16. Biochemistry 50, 10836–10843 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Goris, T. et al. A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat. Chem. Biol. 7, 310–318 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Fritsch, J. et al. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature 479, 249–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Shomura, Y., Yoon, K.S., Nishihara, H. & Higuchi, Y. Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature 479, 253–256 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Volbeda, A. et al. X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Proc. Natl. Acad. Sci. USA 109, 5305–5310 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Knüttel, K. et al. Redox properties of the metal centers in the membrane-bound hydrogenase from Alcaligenes eutrophus CH34. Bul. Pol. Acad. Sci. Chem. 42, 495–511 (1994).

    Google Scholar 

  12. Pandelia, M.E. et al. Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus. Proc. Natl. Acad. Sci. USA 108, 6097–6102 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schneider, K., Patil, D.S. & Cammack, R. ESR properties of membrane-bound hydrogenases from aerobic hydrogen bacteria. Biochim. Biophys. Acta 748, 353–361 (1983).

    Article  CAS  Google Scholar 

  14. Cammack, R. “Super-reduction” of chromatium high-potential iron-sulphur protein in the presence of dimethyl sulphoxide. Biochem. Biophys. Res. Commun. 54, 548–554 (1973).

    Article  CAS  PubMed  Google Scholar 

  15. Cracknell, J.A., Wait, A.F., Lenz, O., Friedrich, B. & Armstrong, F.A. A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases. Proc. Natl. Acad. Sci. USA 106, 20681–20686 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lauterbach, L. & Lenz, O. Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2 . J. Am. Chem. Soc. 135, 17897–17905 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Saggu, M. et al. Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16. J. Biol. Chem. 284, 16264–16276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ogata, H. et al. Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state. Structure 13, 1635–1642 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Rippers, Y., Horch, M., Hildebrandt, P., Zebger, I. & Mroginski, M.A. Revealing the absolute configuration of the CO and CN ligands at the active site of a [NiFe] hydrogenase. ChemPhysChem 13, 3852–3856 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Ishikita, H. & Saito, K. Proton transfer reactions and hydrogen-bond networks in protein environments. J. R. Soc. Interface 11, 20130518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cross, M. et al. Removal of a cysteine ligand from rubredoxin: assembly of Fe2S2 and Fe(S-Cys)3(OH) centres. J. Biol. Inorg. Chem. 7, 781–790 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Sanders-Loehr, J. Resonance Raman-spectroscopy of iron-oxo and iron-sulfur clusters in proteins. ACS Symp. Ser. 372, 49–67 (1988).

    Article  CAS  Google Scholar 

  23. Siebert, E. et al. Resonance Raman spectroscopy as a tool to monitor the active site of hydrogenases. Angew. Chem. Int. Edn. Engl. 52, 5162–5165 (2013).

    Article  CAS  Google Scholar 

  24. Green, M.T. Application of Badger's rule to heme and non-heme iron-oxygen bonds: an examination of ferryl protonation states. J. Am. Chem. Soc. 128, 1902–1906 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Dikanov, S.A. & Tsvetkov, Y.D. Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. (CRC Press, 1992).

  26. Pandelia, M.E., Infossi, P., Stein, M., Giudici-Orticoni, M.T. & Lubitz, W. Spectroscopic characterization of the key catalytic intermediate Ni-C in the O2-tolerant [NiFe] hydrogenase I from Aquifex aeolicus: evidence of a weakly bound hydride. Chem. Commun. (Camb.) 48, 823–825 (2012).

    Article  CAS  Google Scholar 

  27. Saggu, M. et al. Comparison of the membrane-bound [NiFe] hydrogenases from R. eutropha H16 and D. vulgaris Miyazaki F in the oxidized ready state by pulsed EPR. Phys. Chem. Chem. Phys. 12, 2139–2148 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Maly, T. & Prisner, T.F. Relaxation filtered hyperfine spectroscopy (REFINE). J. Magn. Reson. 170, 88–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Edmonds, D.T. & Summers, C.P. 14N pure quadrupole resonance in solid amino-acids. J. Magn. Reson. 12, 134–142 (1973).

    CAS  Google Scholar 

  30. Cammack, R. & MacMillan, F. in Metals in Biology Vol. 29 (eds. Hanson, G. & Berliner, L.) 11–44 (Springer New York, 2010).

  31. Roessler, M.M., Evans, R.M., Davies, R.A., Harmer, J. & Armstrong, F.A. EPR spectroscopic studies of the Fe-S clusters in the O2-tolerant [NiFe]-hydrogenase Hyd-1 from Escherichia coli and characterization of the unique [4Fe-3S] cluster by HYSCORE. J. Am. Chem. Soc. 134, 15581–15594 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. DeRose, V.J., Telser, J., Anderson, M.E., Lindahl, P.A. & Hoffman, B.M. A multinuclear ENDOR study of the C-cluster in CO dehydrogenase from Clostridium thermoaceticum: Evidence for HxO and histidine coordination to the [Fe4S4] center. J. Am. Chem. Soc. 120, 8767–8776 (1998).

    Article  CAS  Google Scholar 

  33. Shergill, J.K. & Cammack, R. ESEEM and ENDOR studies of the Rieske iron-sulphur protein in bovine heart mitochondrial membranes. Biochim. Biophys. Acta 1185, 35–42 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Fritscher, J. Influence of hydrogen bond geometry on quadrupole coupling parameters: a theoretical study of imidazole-water and imidazole-semiquinone complexes. Phys. Chem. Chem. Phys. 6, 4950–4956 (2004).

    Article  CAS  Google Scholar 

  35. Pelmenschikov, V. & Kaupp, M. Redox-dependent structural transformations of the [4Fe-3S] proximal cluster in O2-tolerant membrane-bound [NiFe]-hydrogenase: a DFT study. J. Am. Chem. Soc. 135, 11809–11823 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Ludwig, M., Cracknell, J.A., Vincent, K.A., Armstrong, F.A. & Lenz, O. Oxygen-tolerant H2 oxidation by membrane-bound [NiFe] hydrogenases of Ralstonia species. Coping with low level H2 in air. J. Biol. Chem. 284, 465–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Schubert, T., Lenz, O., Krause, E., Volkmer, R. & Friedrich, B. Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol. Microbiol. 66, 453–467 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Abou Hamdan, A. et al. Understanding and tuning the catalytic bias of hydrogenase. J. Am. Chem. Soc. 134, 8368–8371 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Peters, J.W. et al. Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36, 1181–1187 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, W. et al. Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. Structure 5, 691–699 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Noveron, J.C., Olmstead, M.M. & Mascharak, P.K. Effect of carboxamido N coordination to iron on the redox potential of low-spin non-heme iron centers with N,S coordination: relevance to the iron site of nitrile hydratase. Inorg. Chem. 37, 1138–1139 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Abou Hamdan, A. et al. O2-independent formation of the inactive states of NiFe hydrogenase. Nat. Chem. Biol. 9, 15–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Carepo, M. et al. 17O ENDOR detection of a solvent-derived Ni-(OHx)-Fe bridge that is lost upon activation of the hydrogenase from Desulfovibrio gigas. J. Am. Chem. Soc. 124, 281–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Bruska, M.K., Stiebritz, M.T. & Reiher, M. Analysis of differences in oxygen sensitivity of Fe-S clusters. Dalton Trans. 42, 8729–8735 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Johnson, R.E., Papaefthymiou, G.C., Frankel, R.B. & Holm, R.H. Effects of secondary bonding interactions on the [Fe4S4]2+ core of ferredoxin site analogs: [Fe4S4(SC6H4-o-OH)4]2−, a distorted cubane-type cluster with one five-coordinate iron atom. J. Am. Chem. Soc. 105, 7280–7287 (1983).

    Article  CAS  Google Scholar 

  46. Pandelia, M.E. et al. Electronic structure of the unique [4Fe-3S] cluster in O2-tolerant hydrogenases characterized by 57Fe Mössbauer and EPR spectroscopy. Proc. Natl. Acad. Sci. USA 110, 483–488 (2013).

    Article  PubMed  Google Scholar 

  47. Lanzilotta, W.N., Christiansen, J., Dean, D.R. & Seefeldt, L.C. Evidence for coupled electron and proton transfer in the [8Fe-7S] cluster of nitrogenase. Biochemistry 37, 11376–11384 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Matias, P.M. et al. [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Å and modelling studies of its interaction with the tetrahaem cytochrome c3 . J. Biol. Inorg. Chem. 6, 63–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Ogata, H., Kellers, P. & Lubitz, W. The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state). J. Mol. Biol. 402, 428–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Wallbank, B., Johnson, C.E. & Main, I.G. Surface reduction of solid 3d transition metal compounds during X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 4, 263–269 (1974).

    Article  CAS  Google Scholar 

  51. Ball, E.G. Studies on oxidation-reduction XXIII. Ascorbic acid. J. Biol. Chem. 118, 219–239 (1937).

    CAS  Google Scholar 

  52. Mueller, U. et al. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J. Synchrotron Radiat. 19, 442–449 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. CCP4. The CCP4 suite programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  56. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kleihues, L., Lenz, O., Bernhard, M., Buhrke, T. & Friedrich, B. The H2 sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases. J. Bacteriol. 182, 2716–2724 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schäfer, C., Friedrich, B. & Lenz, O. Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase in Ralstonia eutropha. Appl. Environ. Microbiol. 79, 5137–5145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Vignais, P.M. H/D exchange reactions and mechanistic aspects of the hydrogenases. Coord. Chem. Rev. 249, 1677–1690 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. von Stetten and A. Royant of the ID29S-Cryobench (European Synchrotron Radiation Facility (ESRF), Grenoble) and the scientific staff of the ESRF at beamlines ID14-1, ID 14-4, ID29, ID 23-1 and ID23-2 and to U. Müller, M. Weiss and the scientific staff of the BESSY-MX/Helmholtz-Zentrum Berlin für Materialien und Energie at beamlines BL 14.1, BL 14.2 and BL 14.3 operated by the Joint Berlin MX-Laboratory at the BESSY II electron storage ring (Berlin-Adlershof, Germany), where the data were collected, for continuous support. We thank C. Müller-Dieckmann for helpful advice in collecting anomalous data at the ID29 (ESRF, Grenoble). J. Hamann is acknowledged for excellent technical support in molecular biology. J. Newie, S. Wohlfahrt and T. Goris are acknowledged for their help in constructing MBH variants. This work was supported by the German Research Foundation (DFG) Cluster of Excellence 'Unifying Concepts in Catalysis' (to P.S., O.L., P.H., V.P. and R.B.). P.S. acknowledges K.P. Hofmann and his advanced investigator European Research Council grant (ERC-2009/249910-TUDOR) for support.

Author information

Authors and Affiliations

Authors

Contributions

S.F. and J.F. prepared MBH samples. P.S., J.F. and S.F. optimized MBH crystallization under different conditions and performed soaking experiments. P.S. collected the X-ray diffraction data, performed data processing and solved the MBH structures. A.S., M.H., J.K. and P.S. refined the crystal structures. J.L., C.T., F.L. and R.B. recorded and analyzed EPR data. E.S., I.Z. and P.H. recorded and analyzed RR spectroscopy data. V.P., Y.R. and M.K. performed and analyzed the DFT calculations. S.F. performed and analyzed H-D exchange measurements. T.J. and O.L. constructed the MBH mutant proteins. S.F., J.F., O.L. and P.S. wrote the paper with contributions from all co-authors.

Corresponding authors

Correspondence to Oliver Lenz or Patrick Scheerer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–14, Supplementary Tables 1–5 and Supplementary Notes 1–3. (PDF 12530 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frielingsdorf, S., Fritsch, J., Schmidt, A. et al. Reversible [4Fe-3S] cluster morphing in an O2-tolerant [NiFe] hydrogenase. Nat Chem Biol 10, 378–385 (2014). https://doi.org/10.1038/nchembio.1500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing