Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence

Abstract

Uniquely among known ribozymes, the glmS ribozyme-riboswitch requires a small-molecule coenzyme, glucosamine-6-phosphate (GlcN6P). Although consistent with its gene-regulatory function, the use of GlcN6P is unexpected because all of the other characterized self-cleaving ribozymes use RNA functional groups or divalent cations for catalysis. To determine what active site features make this ribozyme reliant on GlcN6P and to evaluate whether it might have evolved from a coenzyme-independent ancestor, we isolated a GlcN6P-independent variant through in vitro selection. Three active site mutations suffice to generate a highly reactive RNA that adopts the wild-type fold but uses divalent cations for catalysis and is insensitive to GlcN6P. Biochemical and crystallographic comparisons of wild-type and mutant ribozymes show that a handful of functional groups fine-tune the RNA to be either coenzyme or cation dependent. These results indicate that a few mutations can confer new biochemical activities on structured RNAs. Thus, families of structurally related ribozymes with divergent function may exist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the pre-cleavage active site structures and catalytic strategies of three natural nucleolytic ribozymes.
Figure 2: glmSAAA is a stably folded metal ion–dependent ribozyme.
Figure 3: A cation-binding site in glmSAAA important for catalysis.
Figure 4: Effect of active site residues in GlcN6P-dependent and metal ion-dependent catalysis.
Figure 5: Chemical and structural analyses correlate metal ion utilization by glmSAAA and glmSWT.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A. & Breaker, R.R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ferré-D'Amaré, A.R. The glmS ribozyme: use of a small molecule coenzyme by a gene-regulatory RNA. Q. Rev. Biophys. 43, 423–447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Collins, J.A., Irnov, I., Baker, S. & Winkler, W.C. Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev. 21, 3356–3368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klein, D.J. & Ferré-D'Amaré, A.R. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313, 1752–1756 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Hampel, K.J. & Tinsley, M.M. Evidence for preorganization of the glmS ribozyme ligand binding pocket. Biochemistry 45, 7861–7871 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Tinsley, R.A., Furchak, J.R. & Walter, N.G. trans-Acting glmS catalytic riboswitch: locked and loaded. RNA 13, 468–477 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, J., Lau, M.W. & Ferré-D'Amaré, A.R. Ribozymes and riboswitches: modulation of RNA function by small molecules. Biochemistry 49, 9123–9131 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. McCown, P.J., Roth, A. & Breaker, R. An expanded collection and refined consensus model of glmS ribozymes. RNA 17, 728–736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Webb, C.-H.T., Riccitelli, N.J., Ruminski, D.J. & Lupták, A. Widespread occurrence of self-cleaving ribozymes. Science 326, 953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de la Peña, M. & García-Robles, I. Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA 16, 1943–1950 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Salehi-Ashtiani, K. & Szostak, J.W. In vitro evolution suggests multiple origins for the hammerhead ribozyme. Nature 414, 82–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Williams, K.P., Ciafré, S. & Tocchini-Valentini, G.P. Selection of novel Mg2+-dependent self-cleaving ribozymes. EMBO J. 14, 4551–4557 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang, J. & Breaker, R.R. Structural diversity of self-cleaving ribozymes. Proc. Natl. Acad. Sci. USA 97, 5784–5789 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lazarev, D., Puskarz, I.J. & Breaker, R.R. Substrate specificity and reaction kinetics of an X-motif ribozyme. RNA 9, 688–697 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferré-D'Amaré, A.R. & Scott, W.G. Small self-cleaving ribozymes. Cold Spring Harb. Perspect. Biol. 2, a003574 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jayasena, V.K. & Gold, L. In vitro selection of self-cleaving RNAs with a low pH optimum. Proc. Natl. Acad. Sci. USA 94, 10612–10617 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brooks, K.M. & Hampel, K.J. Rapid steps in the glmS ribozyme catalytic pathway: cation and ligand requirements. Biochemistry 50, 2424–2433 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Emilsson, G.M., Nakamura, S., Roth, A. & Breaker, R. Ribozyme speed limits. RNA 9, 907–918 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rupert, P.B. & Ferré-D'Amaré, A.R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Rupert, P.B., Massey, A.P., Sigurdsson, S.T. & Ferré-D'Amaré, A.R. Transition state stabilization by a catalytic RNA. Science 298, 1421–1424 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Bevilacqua, P.C. Mechanistic considerations for general acid-base catalysis by RNA: revisiting the mechanism of the hairpin ribozyme. Biochemistry 42, 2259–2265 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Ferré-D'Amaré, A.R. The hairpin ribozyme. Biopolymers 73, 71–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Kath-Schorr, S. et al. General acid-base catalysis mediated by nucleobases in the hairpin ribozyme. J. Am. Chem. Soc. 134, 16717–16724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martick, M. & Scott, W.G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126, 309–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gong, B., Klein, D.J., Ferré-D'Amaré, A.R. & Carey, P.R. The glmS ribozyme tunes the catalytically critical pKa of its coenzyme glucosamine-6-phosphate. J. Am. Chem. Soc. 133, 14188–14191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davis, J.H., Dunican, B.F. & Strobel, S.A. glmS riboswitch binding to the glucosamine-6-phosphate α-anomer shifts the pKa toward neutrality. Biochemistry 50, 7236–7242 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Viladoms, J. & Fedor, M.J. The glmS ribozyme cofactor is a general acid-base catalyst. J. Am. Chem. Soc. 134, 19043–19049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Viladoms, J., Scott, L. & Fedor, M. An active-site guanine participates in glmS ribozyme catalysis in its protonated state. J. Am. Chem. Soc. 133, 18388–18396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Link, K.H., Guo, L. & Breaker, R. Examination of the structural and functional versatility of glmS ribozymes by using in vitro selection. Nucleic Acids Res. 34, 4968–4975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deigan, K.E. & Ferré-D'Amaré, A. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc. Chem. Res. 44, 1329–1338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Posakony, J.J. & Ferré-D'Amaré, A.R. Glucosamine and glucosamine-6-phosphate derivatives: catalytic cofactor analogues for the glmS ribozyme. J. Org. Chem. 78, 4730–4743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferré-D'Amaré, A.R. Use of a coenzyme by the glmS ribozyme-riboswitch suggests primordial expansion of RNA chemistry by small molecules. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2942–2948 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Igloi, G.L. Interaction of tRNAs and of phosphorothioate-substituted nucleic acids with an organomercurial. Probing the chemical environment of thiolated residues by affinity electrophoresis. Biochemistry 27, 3842–3849 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Roth, A., Nahvi, A., Lee, M., Jona, I. & Breaker, R.R. Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. RNA 12, 607–619 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klawuhn, K., Jansen, J.A., Souchek, J., Soukup, G.A. & Soukup, J.K. Analysis of metal ion dependence in glmS ribozyme self-cleavage and coenzyme binding. ChemBioChem 11, 2567–2571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cowan, J.A. Metallobiochemistry of RNA. Co(NH3)63+ as a probe for Mg2+ (aq) binding sites. J. Inorg. Biochem. 49, 171–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Draper, D.E. A guide to ions and RNA structure. RNA 10, 335–343 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Romani, A. & Scarpa, A. Regulation of cell magnesium. Arch. Biochem. Biophys. 298, 1–12 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Schatz, D., Leberman, R. & Eckstein, F. Interaction of Escherichia coli tRNASer with its cognate aminoacyl-tRNA synthetase as determined by footprinting with phosphorothioate-containing tRNA transcripts. Proc. Natl. Acad. Sci. USA 88, 6132–6136 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jansen, J.A., McCarthy, T.J., Soukup, G.A. & Soukup, J.K. Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat. Struct. Mol. Biol. 13, 517–523 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Cochrane, J.C., Lipchock, S.V. & Strobel, S.A. Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chem. Biol. 14, 97–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Klein, D.J., Wilkinson, S.R., Been, M.D. & Ferré-D'Amaré, A.R. Requirement of helix P2.2 and nucleotide G1 for positioning of the cleavage site and cofactor of the glmS ribozyme. J. Mol. Biol. 373, 178–189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McCarthy, T.J. et al. Ligand requirements for glmS ribozyme self-cleavage. Chem. Biol. 12, 1221–1226 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Xiao, H., Murakami, H., Suga, H. & Ferré-D'Amaré, A.R. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme. Nature 454, 358–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Klein, D.J., Been, M.D. & Ferré-D'Amaré, A.R. Essential role of an active-site guanine in glmS ribozyme catalysis. J. Am. Chem. Soc. 129, 14858–14859 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Barrick, J.E. et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA 101, 6421–6426 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Soukup, G.A. Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure. Nucleic Acids Res. 34, 968–975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schultes, E.A. & Bartel, D.P. One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289, 448–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Nagano, N., Orengo, C.A. & Thornton, J.M. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J. Mol. Biol. 321, 741–765 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Pitt, J.N. & Ferré-D'Amaré, A.R. Rapid construction of empirical RNA fitness landscapes. Science 330, 376–379 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pitt, J.N. & Ferré-D'Amaré, A.R. Structure-guided engineering of the regioselectivity of RNA ligase ribozymes. J. Am. Chem. Soc. 131, 3532–3540 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cochrane, J.C., Lipchock, S.V., Smith, K.D. & Strobel, S.A. Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme. Biochemistry 48, 3239–3246 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Baird, N.J. & Ferré-D'Amaré, A.R. Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis. RNA 16, 598–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klein, D.J. & Ferré-D'Amaré, A.R. Crystallization of the glmS ribozyme-riboswitch. Methods Mol. Biol. 540, 129–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Otwinowski, Z. & Minor, W. Processing of diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  56. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Brünger, A.T. et al. Crystallography and NMR system: a new software system for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  58. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  59. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, 2002).

  60. Ryder, S.P., Ortoleva-Donnelly, L., Kosek, A.B. & Strobel, S.A. Chemical probing of RNA by nucleotide analog interference mapping. Methods Enzymol. 317, 92–109 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff at beamlines 5.0.1 and 5.0.2 of the Advanced Light Source and of 12-ID (BESSRC CAT) of the Advanced Photon Source for crystallographic and SAXS data collection support, respectively; X. Fang and Y.-X. Wang for access to SAXS beamtime; D.-Y. Lee and R. Levine for access to MS; J. Sellers for access to a rapid quench apparatus; N. Baird for performing analysis of SAXS data; K. Deigan, J. Posakony and J. Zhang for discussions; and an anonymous referee for motivating the phosphorothioate interference analysis of glmSAAG and glmSUAG. M.W.L.L. was a recipient of the Croucher Foundation Fellowship. This work was supported in part by the intramural program of the US National Heart, Lung and Blood Institute–National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

M.W.L.L. and A.R.F.-D. designed experiments, M.W.L.L. performed all of the biochemistry, M.W.L.L. collected SAXS data and grew crystals and M.W.L.L. and A.R.F.-D. collected diffraction data, solved and refined the crystal structures and wrote the manuscript.

Corresponding author

Correspondence to Adrian R Ferré-D'Amaré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1–4. (PDF 12189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, M., Ferré-D'Amaré, A. An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence. Nat Chem Biol 9, 805–810 (2013). https://doi.org/10.1038/nchembio.1360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing