Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A substrate radical intermediate in catalysis by the antibiotic resistance protein Cfr

Abstract

Cfr-dependent methylation of C8 of A2503 in 23S ribosomal RNA confers bacterial resistance to an array of clinically important antibiotics that target the large subunit of the ribosome, including the synthetic oxazolidinone antibiotic linezolid. The key element of the proposed mechanism for Cfr, a radical S-adenosylmethionine enzyme, is the addition of a methylene radical, generated by hydrogen-atom abstraction from the methyl group of an S-methylated cysteine, onto C8 of A2503 to form a protein–nucleic acid crosslinked species containing an unpaired electron. Herein we use continuous-wave and pulsed EPR techniques to provide direct spectroscopic evidence for this intermediate, showing a spin-delocalized radical with maximum spin density at N7 of the adenine ring. In addition, we use rapid freeze-quench EPR to show that the radical forms and decays with rate constants that are consistent with the rate of formation of the methylated product.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanistic proposal for catalysis by Cfr.
Figure 2: EPR and ENDOR study of the substrate radical.
Figure 3: Spin density distribution in the A2503 radical species, as modeled by spin-unrestricted B3LYP (DFT) methods.
Figure 4: Kinetic competence of radical intermediate.

Similar content being viewed by others

References

  1. Choffnes, E.R., Relman, D.A. & Mack, A. Antibiotic Resistance: Implications for Global Health and Novel Intervention Strategies (National Academies Press, 2010).

  2. Fischbach, M.A. & Walsh, C.T. Antibiotics for emerging pathogens. Science 325, 1089–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Poehlsgaard, J. & Douthwaite, S. The bacterial ribosome as a target for antibiotics. Nat. Rev. Microbiol. 3, 870–881 (2005).

    CAS  PubMed  Google Scholar 

  4. Steitz, T.A. From the structure and function of the ribosome to new antibiotics (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 49, 4381–4398 (2010).

    CAS  PubMed  Google Scholar 

  5. Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577–585 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kehrenberg, C., Schwarz, S., Jacobsen, N.E., Hansen, L.H. & Vester, B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol. Microbiol. 57, 1064–1073 (2005).

    CAS  PubMed  Google Scholar 

  7. Long, K.S., Poehlsgaard, J., Kehrenberg, C., Schwarz, S. & Vester, B. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob. Agents Chemother. 50, 2500–2505 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwarz, S., Werckenthin, C. & Kehrenberg, C. Identification of a plasmid-borne chloramphenicol–florfenicol resistance gene in Staphylococcus sciuri. Antimicrob. Agents Chemother. 44, 2530–2533 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith, L.K. & Mankin, A.S. Transcriptional and translational control of the mlr operon, which confers resistance to seven classes of protein synthesis inhibitors. Antimicrob. Agents Chemother. 52, 1703–1712 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Giessing, A.M.B. et al. Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria. RNA 15, 327–336 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ban, N. et al. A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93, 1105–1115 (1998).

    CAS  PubMed  Google Scholar 

  12. Harms, J. et al. High-resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).

    CAS  PubMed  Google Scholar 

  13. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005).

    CAS  PubMed  Google Scholar 

  14. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    CAS  PubMed  Google Scholar 

  15. Kowalak, J.A., Bruenger, E. & McCloskey, J.A. Posttranscriptional modification of the central loop of domain V in Escherichia coli 23S ribosomal RNA. J. Biol. Chem. 270, 17758–17764 (1995).

    CAS  PubMed  Google Scholar 

  16. Toh, S.-M., Xiong, L., Bae, T. & Mankin, A.S. The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. RNA 14, 98–106 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vázquez-Laslop, N., Ramu, H., Klepacki, D. & Mankin, A.S. The key role of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide. EMBO J. 29, 3108–3117 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Diekema, D.J. & Jones, R.N. Oxazolidinone antibiotics. Lancet 358, 1975–1982 (2001).

    CAS  PubMed  Google Scholar 

  19. Toh, S.-M. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol. Microbiol. 64, 1506–1514 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bonilla, H. et al. Multicity outbreak of linezolid-resistant Staphylococcus epidermidis associated with clonal spread of a cfr-containing strain. Clin. Infect. Dis. 51, 796–800 (2010).

    PubMed  Google Scholar 

  21. Mendes, R.E. et al. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob. Agents Chemother. 52, 2244–2246 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Farrell, D.J., Mendes, R.E., Ross, J.E. & Jones, R.N. Linezolid surveillance program results for 2008 (LEADER Program for 2008). Diagn. Microbiol. Infect. Dis. 65, 392–403 (2009).

    PubMed  Google Scholar 

  23. Farrell, D.J., Mendes, R.E., Ross, J.E., Sader, H.S. & Jones, R.N. LEADER program results for 2009: an activity and spectrum analysis of linezolid using 6,414 clinical isolates from 56 medical centers in the United States. Antimicrob. Agents Chemother. 55, 3684–3690 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Morales, G. et al. Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin. Infect. Dis. 50, 821–825 (2010).

    CAS  PubMed  Google Scholar 

  25. Sánchez-García, M. et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. J. Am. Med. Assoc. 303, 2260–2264 (2010).

    Google Scholar 

  26. Mendes, R.E. et al. Assessment of linezolid resistance mechanisms among Staphylococcus epidermidis causing bacteraemia in Rome, Italy. J. Antimicrob. Chemother. 65, 2329–2335 (2010).

    CAS  PubMed  Google Scholar 

  27. Mendes, R.E. et al. First report of Staphylococcal clinical isolates in Mexico with linezolid resistance caused by cfr: evidence of in vivo cfr mobilization. J. Clin. Microbiol. 48, 3041–3043 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. Shore, A.C. et al. Identification and characterization of the multidrug resistance gene cfr in a Panton-Valentine leukocidin-positive sequence type 8 methicillin-resistant Staphylococcus aureus IVa (USA300) isolate. Antimicrob. Agents Chemother. 54, 4978–4984 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Diaz, L. et al. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob. Agents Chemother. 56, 3917–3922 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hansen, L.H., Planellas, M.H., Long, K.S. & Vester, B. The order Bacillales hosts functional homologs of the worrisome cfr antibiotic resistance gene. Antimicrob. Agents Chemother. 56, 3563–3567 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Booker, S.J. Anaerobic functionalization of unactivated C–H bonds. Curr. Opin. Chem. Biol. 13, 58–73 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Challand, M.R., Driesener, R.C. & Roach, P.L. Radical S-adenosylmethionine enzymes: mechanism, control and function. Nat. Prod. Rep. 28, 1696–1721 (2011).

    CAS  PubMed  Google Scholar 

  33. Frey, P.A., Hegeman, A.D. & Ruzicka, F.J. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008).

    CAS  PubMed  Google Scholar 

  34. Kim, S., Meehan, T. & Schaefer, H.F. III. Hydrogen-atom abstraction from the adenine–uracil base pair. J. Phys. Chem. A 111, 6806–6812 (2007).

    CAS  PubMed  Google Scholar 

  35. Zierhut, M., Roth, W. & Fischer, I. Dynamics of H-atom loss in adenine. Phys. Chem. Chem. Phys. 6, 5178–5183 (2004).

    CAS  Google Scholar 

  36. Grove, T.L. et al. A radically different mechanism for S-adenosylmethionine–dependent methyltransferases. Science 332, 604–607 (2011).

    CAS  PubMed  Google Scholar 

  37. Yan, F. & Fujimori, D.G. RNA methylation by radical SAM enzyme RlmN and Cfr proceeds via methylene transfer and hydride shift. Proc. Natl. Acad. Sci. USA 108, 3930–3934 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Boal, A.K. et al. Structural basis for methyl transfer by a radical SAM enzyme. Science 332, 1089–1092 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yan, F. et al. RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA. J. Am. Chem. Soc. 132, 3953–3964 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Grove, T.L., Radle, M.I., Krebs, C. & Booker, S.J. Cfr and RlmN contain a single [4Fe–4S] cluster, which directs two distinct reactivities for S-adenosylmethionine: methyl transfer by SN2 displacement and radical generation. J. Am. Chem. Soc. 133, 19586–19589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Weil, J.A., Bolton, J.R. & Wertz, J.E. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications (John Wiley & Sons, Inc., 1994).

  42. Gaussian v. 3 Revision E.01 ed. (Gaussian, Inc., Wallingford, CT, 2004).

  43. Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 38, 3098–3100 (1988).

    CAS  Google Scholar 

  44. Perdew, J.P. & Wang, Y. Jellium work function for all electron densities. Phys. Rev. B Condens. Matter 38, 12228–12232 (1988).

    CAS  PubMed  Google Scholar 

  45. Schäfer, A., Huber, C. & Ahlrichs, R. Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

    Google Scholar 

  46. Minisci, F. Novel applications of free-radical reactions in preparative organic chemistry. Synthesis 1–24 (1973).

    Google Scholar 

  47. Kaminska, K.H. et al. Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria. Nucleic Acids Res. 38, 1652–1663 (2010).

    CAS  PubMed  Google Scholar 

  48. McCusker, K.P. et al. Covalent intermediate in the catalytic mechanism of the radical S-adenosyl-L-methionine methyl synthase RlmN trapped by mutagenesis. J. Am. Chem. Soc. 134, 18074–18081 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Close, D.M. & Nelson, W.H. ESR and ENDOR study of adenosine single crystals X-irradiated at 10 K. Radiat. Res. 117, 367–378 (1989).

    CAS  PubMed  Google Scholar 

  50. Iwig, D.F. & Booker, S.J. Insight into the polar reactivity of the onium chalcogen analogues of S-adenosyl-l-methionine. Biochemistry 43, 13496–13509 (2004).

    CAS  PubMed  Google Scholar 

  51. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72, 248–254 (1976).

    CAS  PubMed  Google Scholar 

  52. Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, 2001).

  53. Bollinger, J.M. Jr. et al. Use of rapid kinetics methods to study the assembly of the diferric-tyrosyl radical cofactor of E. coli ribonucleotide reductase. Methods Enzymol. 258, 278–303 (1995).

    CAS  PubMed  Google Scholar 

  54. Fujii, K., Galivan, J.H. & Huennekens, F.M. Activation of methionine synthase: further characterization of flavoprotein system. Arch. Biochem. Biophys. 178, 662–670 (1977).

    CAS  PubMed  Google Scholar 

  55. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    CAS  PubMed  Google Scholar 

  56. Becke, A.D. Density-functional thermochemistry 3. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  57. Lee, C., Yang, W.T. & Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B Condens. Matter 37, 785–789 (1988).

    CAS  PubMed  Google Scholar 

  58. Klamt, A. & Schuurmann, G. Cosmo—a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2, 799–805 (1993).

  59. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank J.M. Bollinger Jr. and C. Krebs for a critical reading of the manuscript, and we are also grateful to J. Niklas (Argonne National Laboratory) for helpful discussions. This work was supported by US National Institutes of Health grants GM101957 (S.J.B.) and GM101390 (M.T.G.).

Author information

Authors and Affiliations

Authors

Contributions

T.L.G., S.J.B. and A.S. designed experiments, and T.L.G. and E.L.S. prepared samples and performed experiments; J.L. and A.S. acquired spectra and performed DFT calculations; A.S., T.L.G., S.J.B. and M.T.G. analyzed data; T.L.G., S.J.B. and A.S. prepared the manuscript. All of the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Squire J Booker or Alexey Silakov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 1612 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grove, T., Livada, J., Schwalm, E. et al. A substrate radical intermediate in catalysis by the antibiotic resistance protein Cfr. Nat Chem Biol 9, 422–427 (2013). https://doi.org/10.1038/nchembio.1251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1251

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology