Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Architectural and thermodynamic principles underlying intramembrane protease function

Abstract

Intramembrane proteases hydrolyze peptide bonds within the membrane as a signaling paradigm universal to all life forms and with implications in disease. Deciphering the architectural strategies supporting intramembrane proteolysis is an essential but unattained goal. We integrated new, quantitative and high-throughput thermal light-scattering technology, reversible equilibrium unfolding and refolding and quantitative protease assays to interrogate rhomboid architecture with 151 purified variants. Rhomboid proteases maintain low intrinsic thermodynamic stability (ΔG = 2.1–4.5 kcal mol−1) resulting from a multitude of generally weak transmembrane packing interactions, making them highly responsive to their environment. Stability is consolidated by two buried glycines and several packing leucines, with a few multifaceted hydrogen bonds strategically deployed to two peripheral regions. Opposite these regions lie transmembrane segment 5 and connected loops that are notably exempt of structural responsibility, suggesting intramembrane proteolysis involves considerable but localized protein dynamics. Our analyses provide a comprehensive 'heat map' of the physiochemical anatomy underlying membrane-immersed enzyme function at, what is to our knowledge, unprecedented resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermodynamic assessment of rhomboid protease stability.
Figure 2: Differential static light scattering as a probe of rhomboid stability.
Figure 3: Only two regions of hydrogen bonding are critical for GlpG stability.
Figure 4: A small number of van der Waals interactions are critical for GlpG architecture and catalysis.
Figure 5: Quantitative assessment of peripheral TM interactions and catalytic residues: implications for dynamics.
Figure 6: Thermodynamic assessment of GlpG architectural mutants.
Figure 7: Natural diversity in the thermostability of rhomboid proteases.
Figure 8: Architectural principles underlying rhomboid protease function.

Similar content being viewed by others

References

  1. Bowie, J.U. Solving the membrane protein folding problem. Nature 438, 581–589 (2005).

    Article  CAS  Google Scholar 

  2. Booth, P.J. & Curnow, P. Folding scene investigation: membrane proteins. Curr. Opin. Struct. Biol. 19, 8–13 (2009).

    Article  CAS  Google Scholar 

  3. De Strooper, B. & Annaert, W. Novel research horizons for presenilins and γ-secretases in cell biology and disease. Annu. Rev. Cell Dev. Biol. 26, 235–260 (2010).

    Article  CAS  Google Scholar 

  4. Wolfe, M.S. Intramembrane proteolysis. Chem. Rev. 109, 1599–1612 (2009).

    Article  CAS  Google Scholar 

  5. Brown, M.S., Ye, J., Rawson, R.B. & Goldstein, J.L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    Article  CAS  Google Scholar 

  6. Urban, S. Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms. Nat. Rev. Microbiol. 7, 411–423 (2009).

    Article  CAS  Google Scholar 

  7. Fluhrer, R., Steiner, H. & Haass, C. Intramembrane proteolysis by signal peptide peptidases: a comparative discussion of GXGD-type aspartyl proteases. J. Biol. Chem. 284, 13975–13979 (2009).

    Article  CAS  Google Scholar 

  8. Greenblatt, E.J., Olzmann, J.A. & Kopito, R.R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat. Struct. Mol. Biol. 18, 1147–1152 (2011).

    Article  CAS  Google Scholar 

  9. Zettl, M., Adrain, C., Strisovsky, K., Lastun, V. & Freeman, M. Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell 145, 79–91 (2011).

    Article  CAS  Google Scholar 

  10. Wang, Y., Zhang, Y. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179–180 (2006).

    Article  CAS  Google Scholar 

  11. Wu, Z. et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol. 13, 1084–1091 (2006).

    Article  CAS  Google Scholar 

  12. Ben-Shem, A., Fass, D. & Bibi, E. Structural basis for intramembrane proteolysis by rhomboid serine proteases. Proc. Natl. Acad. Sci. USA 104, 462–466 (2007).

    Article  CAS  Google Scholar 

  13. Baker, R.P., Young, K., Feng, L., Shi, Y. & Urban, S. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc. Natl. Acad. Sci. USA 104, 8257–8262 (2007).

    Article  CAS  Google Scholar 

  14. Urban, S. Taking the plunge: integrating structural, enzymatic and computational insights into a unified model for membrane-immersed rhomboid proteolysis. Biochem. J. 425, 501–512 (2010).

    Article  CAS  Google Scholar 

  15. Vinothkumar, K.R. Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 407, 232–247 (2011).

    Article  CAS  Google Scholar 

  16. Hong, H., Joh, N.H., Bowie, J.U. & Tamm, L.K. Methods for measuring the thermodynamic stability of membrane proteins. Methods Enzymol. 455, 213–236 (2009).

    Article  CAS  Google Scholar 

  17. Curnow, P. & Booth, P.J. Combined kinetic and thermodynamic analysis of α-helical membrane protein unfolding. Proc. Natl. Acad. Sci. USA 104, 18970–18975 (2007).

    Article  CAS  Google Scholar 

  18. Lau, F.W. & Bowie, J.U. A method for assessing the stability of a membrane protein. Biochemistry 36, 5884–5892 (1997).

    Article  CAS  Google Scholar 

  19. Santoro, M.M. & Bolen, D.W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl α-chymotrypsin using different denaturants. Biochemistry 27, 8063–8068 (1988).

    Article  CAS  Google Scholar 

  20. Yeh, A.P., McMillan, A. & Stowell, M.H. Rapid and simple protein-stability screens: application to membrane proteins. Acta Crystallogr. D Biol. Crystallogr. 62, 451–457 (2006).

    Article  Google Scholar 

  21. Senisterra, G.A. et al. Assessing the stability of membrane proteins to detect ligand binding using differential static light scattering. J. Biomol. Screen. 15, 314–320 (2010).

    Article  CAS  Google Scholar 

  22. Choma, C., Gratkowski, H., Lear, J.D. & DeGrado, W.F. Asparagine-mediated self-association of a model transmembrane helix. Nat. Struct. Biol. 7, 161–166 (2000).

    Article  CAS  Google Scholar 

  23. Zhou, F.X., Merianos, H.J., Brunger, A.T. & Engelman, D.M. Polar residues drive association of polyleucine transmembrane helices. Proc. Natl. Acad. Sci. USA 98, 2250–2255 (2001).

    Article  CAS  Google Scholar 

  24. Joh, N.H. et al. Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. Nature 453, 1266–1270 (2008).

    Article  CAS  Google Scholar 

  25. Curnow, P. & Booth, P.J. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein. J. Mol. Biol. 403, 630–642 (2010).

    Article  CAS  Google Scholar 

  26. Eilers, M., Shekar, S.C., Shieh, T., Smith, S.O. & Fleming, P.J. Internal packing of helical membrane proteins. Proc. Natl. Acad. Sci. USA 97, 5796–5801 (2000).

    Article  CAS  Google Scholar 

  27. Oberai, A., Joh, N.H., Pettit, F.K. & Bowie, J.U. Structural imperatives impose diverse evolutionary constraints on helical membrane proteins. Proc. Natl. Acad. Sci. USA 106, 17747–17750 (2009).

    Article  CAS  Google Scholar 

  28. Doura, A.K., Kobus, F.J., Dubrovsky, L., Hibbard, E. & Fleming, K.G. Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer. J. Mol. Biol. 341, 991–998 (2004).

    Article  CAS  Google Scholar 

  29. Joh, N.H., Oberai, A., Yang, D., Whitelegge, J.P. & Bowie, J.U. Similar energetic contributions of packing in the core of membrane and water-soluble proteins. J. Am. Chem. Soc. 131, 10846–10847 (2009).

    Article  CAS  Google Scholar 

  30. Russ, W.P. & Engelman, D.M. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296, 911–919 (2000).

    Article  CAS  Google Scholar 

  31. Schneider, D. & Engelman, D.M. Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions. J. Mol. Biol. 343, 799–804 (2004).

    Article  CAS  Google Scholar 

  32. Urban, S. & Baker, R.P. In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells. Biol. Chem. 389, 1107–1115 (2008).

    Article  CAS  Google Scholar 

  33. Tastan, O., Klein-Seetharaman, J. & Meirovitch, H. The effect of loops on the structural organization of α-helical membrane proteins. Biophys. J. 96, 2299–2312 (2009).

    Article  CAS  Google Scholar 

  34. Barrera, F.N. et al. Protein self-assembly and lipid binding in the folding of the potassium channel KcsA. Biochemistry 47, 2123–2133 (2008).

    Article  CAS  Google Scholar 

  35. Veerappan, A., Cymer, F., Klein, N. & Schneider, D. The tetrameric α-helical membrane protein GlpF unfolds via a dimeric folding intermediate. Biochemistry 50, 10223–10230 (2011).

    Article  CAS  Google Scholar 

  36. Urban, S. & Wolfe, M.S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. USA 102, 1883–1888 (2005).

    Article  CAS  Google Scholar 

  37. Bondar, A.N., del Val, C. & White, S.H. Rhomboid protease dynamics and lipid interactions. Structure 17, 395–405 (2009).

    Article  CAS  Google Scholar 

  38. Findlay, H.E., Rutherford, N.G., Henderson, P.J. & Booth, P.J. Unfolding free energy of a two-domain transmembrane sugar transport protein. Proc. Natl. Acad. Sci. USA 107, 18451–18456 (2010).

    Article  CAS  Google Scholar 

  39. Otzen, D.E. Folding of DsbB in mixed micelles: a kinetic analysis of the stability of a bacterial membrane protein. J. Mol. Biol. 330, 641–649 (2003).

    Article  CAS  Google Scholar 

  40. Fluhrer, R. et al. Intramembrane proteolysis of GXGD-type aspartyl proteases is slowed by a familial Alzheimer disease-like mutation. J. Biol. Chem. 283, 30121–30128 (2008).

    Article  CAS  Google Scholar 

  41. Page, R.M. et al. Generation of Aβ38 and Aβ42 is independently and differentially affected by familial Alzheimer disease–associated presenilin mutations and γ-secretase modulation. J. Biol. Chem. 283, 677–683 (2008).

    Article  CAS  Google Scholar 

  42. Osenkowski, P., Ye, W., Wang, R., Wolfe, M.S. & Selkoe, D.J. Direct and potent regulation of γ-secretase by its lipid microenvironment. J. Biol. Chem. 283, 22529–22540 (2008).

    Article  CAS  Google Scholar 

  43. Santos, J.M., Ferguson, D.J., Blackman, M.J. & Soldati-Favre, D. Intramembrane cleavage of AMA1 triggers Toxoplasma to switch from an invasive to a replicative mode. Science 331, 473–477 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all members of the Urban lab and to D. Otzen for stimulating scientific discussions and to the Malaria Research Institute Biophysics Core for use of their CD spectropolarimeter. This work was supported by the Howard Hughes Medical Institute and the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.P.B. designed research, performed all biochemical experiments (except CD spectroscopy), analyzed data and prepared all figures; S.U. designed research, made all DNA constructs, performed CD spectroscopy, analyzed the data and wrote the paper.

Corresponding author

Correspondence to Sinisa Urban.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 2060 kb)

Supplementary Data Set 1

Supplementary Dataset 1 (XLSX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, R., Urban, S. Architectural and thermodynamic principles underlying intramembrane protease function. Nat Chem Biol 8, 759–768 (2012). https://doi.org/10.1038/nchembio.1021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing