Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bidentate Lewis acid with a telluronium ion as an anion-binding site

Abstract

The search for receptors that can selectively capture small and potentially toxic anions in protic media has sparked a renewed interest in the synthesis and anion-binding properties of polydentate Lewis acids. Seeking new paradigms to enhance the anion affinities of such systems, we synthesized a bidentate Lewis acid that contains a boryl and a telluronium moiety as Lewis acidic sites. Anion-complexation studies indicate that this telluronium borane displays a high affinity for fluoride in methanol. Structural and computational studies show that the unusual fluoride affinity of this bidentate telluronium borane can be correlated with the formation of a B–F → Te chelate motif supported by a strong lone-pair(F) → σ*(Te–C) donor–acceptor interaction. These results, which illustrate the viability of heavier chalcogenium centres as anion-binding sites, allow us to introduce a novel strategy for the design of polydentate Lewis acids with enhanced anion affinities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anion complexation by chelating cationic boranes and Lewis acidic properties of group 16 and 17 compounds.
Figure 2: Synthesis and reactivity of the chalcogenium borane salts [1]OTf and [2]OTf.
Figure 3: Crystal structures of the chalcogenium borane salts and their neutral precursors.
Figure 4: Photophysical properties of the chalcogenium boranes [1]+ and [2]+.
Figure 5: Spectroscopic evidence for the formation and structure of 1-F.
Figure 6: Structural and bonding characteristics of 1-F and 2-F.

Similar content being viewed by others

References

  1. Wuest, J. D. Multiple coordination and activation of Lewis bases by multidentate Lewis acids. Acc. Chem. Res. 32, 81–89 (1999).

    Article  CAS  Google Scholar 

  2. Wedge, T. J. & Hawthorne, M. F. Multidentate carborane-containing Lewis acids and their chemistry: mercuracarborands. Coord. Chem. Rev. 240, 111–128 (2003).

    Article  CAS  Google Scholar 

  3. Shur, V. B. & Tikhonova, I. A. Perfluorinated polymercuramacrocycles as anticrowns. Applications in catalysis. Russ. Chem. Bull. 52, 2539–2554 (2003).

    Article  CAS  Google Scholar 

  4. Taylor, T. J., Burress, C. N. & Gabbaï, F. P. Lewis acidic behavior of fluorinated organomercurials. Organometallics 26, 5252–5263 (2007).

    Article  CAS  Google Scholar 

  5. Kilyanek, S. M., Fang, X. & Jordan, R. F. Synthesis and reactivity of a tetragallium macrocycle. Organometallics 28, 300–305 (2009).

    Article  CAS  Google Scholar 

  6. Hudnall, T. W., Chiu, C.-W. & Gabbaï, F. P. Fluoride ion recognition by chelating and cationic boranes. Acc. Chem. Res. 42, 388–397 (2009).

    Article  CAS  Google Scholar 

  7. Piers, W. E. The chemistry of perfluoroaryl boranes. Adv. Organomet. Chem. 52, 1–76 (2005).

    CAS  Google Scholar 

  8. Melaïmi, M. & Gabbaï, F. P. Bidentate group 13 Lewis acids with ortho-phenylene and peri-naphthalenediyl backbones. Adv. Organomet. Chem. 53, 61–99 (2005).

    Article  Google Scholar 

  9. Emslie, D. J. H., Piers, W. E. & Parvez, M. 2,2′-diborabiphenyl: a Lewis acid analogue of 2,2′-bipyridine. Angew. Chem. Int. Ed. 42, 1252–1255 (2003).

    Article  CAS  Google Scholar 

  10. Katz, H. E. Recent advances in multidentate anion complexation. Inclusion Compd 4, 391–405 (1991).

    CAS  Google Scholar 

  11. Uhl, W. & Hannemann, F. A methylene bridged dialuminum compound as a chelating Lewis acid-complexation of azide and acetate anions by R2Al–CH2–AlR2 [R=CH(SiMe3)2]. J. Organomet. Chem. 579, 18–23 (1999).

    Article  CAS  Google Scholar 

  12. Tagne Kuate, A. C., Reeske, G., Schurmann, M., Costisella, B. & Jurkschat, K. Organotin compounds Ph2XSnCH2-[19]-crown-6 (X = Ph, F, Cl, Br, I, SCN) and Ph2ISnCH2Sn(I)PhCH2-[19]-crown-6 as ditopic receptors for potassium salts. Organometallics 27, 5577–5587 (2008).

    Article  CAS  Google Scholar 

  13. Zobel, B., Duthie, A., Dakternieks, D. & Tiekink, E. R. T. α,ω-Bis(trichloro-stannyl)alkanes as bis(monodentate) Lewis acids toward halide ions. Organometallics 20, 3347–3350 (2001).

    Article  CAS  Google Scholar 

  14. Tamao, K., Hayashi, T., Ito, Y. & Shiro, M. Pentacoordinate anionic bis(siliconates) containing a fluorine bridge between two silicon atoms. Synthesis, solid-state structures, and dynamic behavior in solution. Organometallics 11, 2099–2114 (1992).

    Article  CAS  Google Scholar 

  15. Newcomb, M., Horner, J. H., Blanda, M. T. & Squattrito, P. J. Macrocycles containing tin. Solid complexes of anions encrypted in macrobicyclic Lewis acidic hosts. J. Am. Chem. Soc. 111, 6294–6301 (1989).

    Article  CAS  Google Scholar 

  16. Kawachi, A., Tani, A., Shimada, J. & Yamamoto, Y. Synthesis of B/Si bidentate Lewis acids, o-(fluorosilyl)(dimesitylboryl)benzenes, and their fluoride ion affinity. J. Am. Chem. Soc. 130, 4222–4223 (2008).

    Article  CAS  Google Scholar 

  17. Boshra, R. et al. Simultaneous fluoride binding to ferrocene-based heteronuclear bidentate Lewis acids. Inorg. Chem. 46, 10174–10186 (2007).

    Article  CAS  Google Scholar 

  18. Melaïmi, M. & Gabbaï, F. P. A heteronuclear bidentate Lewis acid as a phosphorescent fluoride sensor. J. Am. Chem. Soc. 127, 9680–9681 (2005).

    Article  Google Scholar 

  19. Lee, M. H. & Gabbaï, F. P. Synthesis and properties of a cationic bidentate Lewis acid. Inorg. Chem. 46, 8132–8138 (2007).

    Article  CAS  Google Scholar 

  20. Wade, C. R., Broomsgrove, A. E. J., Aldridge, S. & Gabbaï, F. P. Fluoride ion complexation and sensing using organoboron compounds. Chem. Rev. 110, 3958–3984 (2010).

    Article  CAS  Google Scholar 

  21. Hudnall, T. W., Kim, Y.-M., Bebbington, M. W. P., Bourissou, D. & Gabbaï, F. P. Fluoride ion chelation by a bidentate phosphonium/borane Lewis acid. J. Am. Chem. Soc. 130, 10890–10891 (2008).

    Article  CAS  Google Scholar 

  22. Kim, Y., Zhao, H. & Gabbaï, F. P. Sulfonium boranes for the selective capture of cyanide ions in water. Angew. Chem. Int. Ed. 48, 4957–4960 (2009).

    Article  CAS  Google Scholar 

  23. Metrangolo, P. & Resnati, G. Halogen bonding: a paradigm in supramolecular chemistry. Chem. Eur. J. 7, 2511–2519 (2001).

    Article  CAS  Google Scholar 

  24. Sudha, N. & Singh, H. B. Intramolecular coordination in tellurium chemistry. Coord. Chem. Rev. 135, 469–515 (1994).

    Article  Google Scholar 

  25. Burling, F. T. & Goldstein, B. M. Computational studies of nonbonded sulfur–oxygen and selenium–oxygen interactions in the thiazole and selenazole nucleosides. J. Am. Chem. Soc. 114, 2313–2320 (1992).

    Article  CAS  Google Scholar 

  26. Gleiter, R., Werz, D. B. & Rausch, B. J. A world beyond hydrogen bonds? Chalcogen–chalcogen interactions yielding tubular structures. Chem. Eur. J. 9, 2676–2683 (2003).

    Article  CAS  Google Scholar 

  27. Bleiholder, C., Werz, D. B., Köppel, H. & Gleiter, R. Theoretical investigations on chalcogen–chalcogen interactions: what makes these nonbonded interactions bonding? J. Am. Chem. Soc. 128, 2666–2674 (2006).

    Article  CAS  Google Scholar 

  28. Tripathi Santosh, K. et al. o-Hydroxylmethylphenylchalcogens: synthesis, intramolecular nonbonded chalcogen · · · OH interactions, and glutathione peroxidase-like activity. J. Org. Chem. 70, 9237–9247 (2005).

    Article  CAS  Google Scholar 

  29. Hayashi, S. & Nakanishi, W. Noncovalent Z · · · Z (Z=O, S, Se, and Te) interactions: how do they operate to control fine structures of 1,8-dichalcogene-substituted naphthalenes? Bull. Chem. Soc. Jpn 81, 1605–1615 (2008).

    Article  CAS  Google Scholar 

  30. Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J. Am. Chem. Soc. 118, 3108–3116 (1996).

    Article  CAS  Google Scholar 

  31. Chandrasekhar, V. & Thirumoorthi, R. Halide-capped tellurium-containing macrocycles. Inorg. Chem. 48, 10330–10337 (2009).

    Article  CAS  Google Scholar 

  32. Klapötke, T. M., Krumm, B. & Scherr, M. Synthesis and structures of triorganochalcogenium (Te, Se, S) dinitramides. Eur. J. Inorg. Chem. 4413–4419 (2008).

  33. Naumann, D., Tyrra, W., Hermannn, R., Pantenburg, I. & Wickleder, M. S. Syntheses and properties of tetrakis(pentafluorophenyl)tellurium, Te(C6F5)4, and related compounds – single crystal structures of tris(pentafluoro-phenyl)tellurium bromide, Te(C6F5)3Br, tris(pentafluorophenyl)tellurium trifluoromethanesulfonate, [Te(C6F5)3][OSO2CF3], and bis(pentafluorophenyl)tellurium oxide, Te(C6F5)2O. Z. Anorg. Allg. Chem. 628, 833–842 (2002).

    Article  CAS  Google Scholar 

  34. Sato, S., Kondo, N., Horn, E. & Furukawa, N. Monooxytellurane(IV) derivatives ([10-Te-4-(C3O)]). Syntheses and molecular structure of triaryltelluronium carboxylate compounds. Organometallics 17, 1897–1900 (1998).

    Article  CAS  Google Scholar 

  35. Hoefelmeyer, J. D. & Gabbaï, F. P. Synthesis of 1,8-diborylnaphthalenes by the ring-opening reaction of a new anionic boron-bridged naphthalene derivative. Organometallics 21, 982–985 (2002).

    Article  CAS  Google Scholar 

  36. Laali, K., Chen, H. Y. & Gerzina, R. J. Selenium-77, tellurium-125, and carbon-13 NMR chemical shifts and one-bond 77Se–13C, 125Te–13C, and 13C–1H coupling constants of trialkylselenonium and -telluronium triflates, protonated dialkylselenonium and -telluronium cations, and their corresponding donor–acceptor complexes. J. Org. Chem. 52, 4126–4128 (1987).

    Article  CAS  Google Scholar 

  37. Saito, S., Zhang, J., Tanida, K., Takahashi, S. & Koizumi, T. A systematic 125Te NMR study of organotellurium compounds: the effect of oxidation states and substituents. Tetrahedron 55, 2545–2552 (1999).

    Article  CAS  Google Scholar 

  38. Batsanov, S. S. Van der waals radii of elements. Inorg. Mater. 37, 871–885 (2001).

    Article  CAS  Google Scholar 

  39. Yamaguchi, S., Akiyama, S. & Tamao, K. Colorimetric fluoride ion sensing by boron-containing π-electron systems. J. Am. Chem. Soc. 123, 11372–11375 (2001).

    Article  CAS  Google Scholar 

  40. Entwistle, C. D. & Marder, T. B. Boron chemistry lights the way: optical properties of molecular and polymeric systems. Angew. Chem. Int. Ed. 41, 2927–2931 (2002).

    Article  CAS  Google Scholar 

  41. Yamaguchi, S. & Wakamiya, A. Boron as a key component for new π-electron materials. Pure Appl. Chem. 78, 1413–1424 (2006).

    Article  CAS  Google Scholar 

  42. Parab, K., Venkatasubbaiah, K. & Jäkle, F. Luminescent triarylborane-functionalized polystyrene: synthesis, photophysical characterization, and anion-binding studies. J. Am. Chem. Soc. 128, 12879–12885 (2006).

    Article  CAS  Google Scholar 

  43. Hudson, Z. M. & Wang, S. Impact of donor–acceptor geometry and metal chelation on photophysical properties and applications of triarylboranes. Acc. Chem. Res. 42, 1584–1596 (2009).

    Article  CAS  Google Scholar 

  44. Lee, M. H., Agou, T., Kobayashi, J., Kawashima, T. & Gabbaï, F. P. Fluoride ion complexation by a cationic borane in aqueous solution. Chem. Commun. 1133–1135 (2007).

  45. Hudnall, T. W. & Gabbaï, F. P. Ammonium boranes for the selective complexation of cyanide or fluoride ions in water. J. Am. Chem. Soc. 129, 11978–11986 (2007).

    Article  CAS  Google Scholar 

  46. Williams, V. C. et al. New bifunctional perfluoroaryl boranes. Synthesis and reactivity of the ortho-phenylene-bridged diboranes 1,2-[B(C6F5)2]2C6X4 (X = H, F). J. Am. Chem. Soc. 121, 3244–3245 (1999).

    Article  CAS  Google Scholar 

  47. Hammerl, A., Klapötke, T. M., Krumm, B. & Scherr, M. Tellurium(IV) fluorides and azides containing the nitrogen donor substituent R = 2-Me2NCH2C6H4; crystal structure of RTeF3 and of an unusual tellurium(VI) fluoride salt. Z. Anorg. Allg. Chem. 633, 1618–1626 (2007).

    Article  CAS  Google Scholar 

  48. Cordero, B. et al. Covalent radii revisited. Dalton Trans. 2832–2838 (2008).

  49. Kirij, N. V., Yagupolskii, Y. L., Tyrra, W., Pantenburg, I. & Naumann, D. The structure of tris(trifluoromethyl)tellurium fluoride dimethylformamide, [Te(CF3)3-DMF(μ-F)]. Z. Anorg. Allg. Chem. 633, 943–945 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CHE-0952912) and the Welch Foundation (A-1423).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. carried out all of the experimental, analytical and computational work. F.P.G. directed the project and assisted with the preparation of the manuscript.

Corresponding author

Correspondence to François P. Gabbaï.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1549 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 21 kb)

Supplementary information

Crystallographic data for the fluoride salt of compound 1 (CIF 23 kb)

Supplementary information

Crystallographic data for triflate salt of compound 1 (CIF 25 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 18 kb)

Supplementary information

Crystallographic data for the fluoride salt of compound 2 (CIF 22 kb)

Supplementary information

Crystallographic data for the triflate salt of compound 2 (CIF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Gabbaï, F. A bidentate Lewis acid with a telluronium ion as an anion-binding site. Nature Chem 2, 984–990 (2010). https://doi.org/10.1038/nchem.838

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing