Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An ionothermally prepared S = 1/2 vanadium oxyfluoride kagome lattice

Abstract

Frustrated magnetic lattices offer the possibility of many exotic ground states that are of great fundamental importance. Of particular significance is the hunt for frustrated spin-1/2 networks as candidates for quantum spin liquids, which would have exciting and unusual magnetic properties at low temperatures. The few reported candidate materials have all been based on d9 ions. Here, we report the ionothermal synthesis of [NH4]2[C7H14N][V7O6F18], an inorganic–organic hybrid solid that contains a S = 1/2 kagome network of d1 V4+ ions. The compound exhibits a high degree of magnetic frustration, with significant antiferromagnetic interactions but no long-range magnetic order or spin-freezing above 2 K, and appears to be an excellent candidate for realizing a quantum spin liquid ground state in a spin-1/2 kagome network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the kagome and double pillared layers in [NH4]2[C7H14N][V7O6F18].
Figure 2: Polyhedra views of the structure of [NH4]2[C7H14N][V7O6F18].
Figure 3: Magnetic properties of [NH4]2[C7H14N][V7O6F18].

Similar content being viewed by others

References

  1. Harrison, A. First catch your hare: the design and synthesis of frustrated magnets. J. Phys. Condens. Matter 16, S553–S572 (2004).

    Article  CAS  Google Scholar 

  2. Ramirez, A. P. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453–480 (1994).

    Article  CAS  Google Scholar 

  3. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  CAS  Google Scholar 

  4. Colman, R. H. et al. Spin dynamics in the S = 1/2 kagome compound vesignieite, Cu3Ba(VO5H)2 . Phys. Rev. B 83, 180416(R) (2011).

  5. Shores, M. P., Nytko, E. A., Bartlett, B. M. & Nocera, D. G. A structurally perfect S = 1/2 kagome antiferromagnet. J. Am. Chem. Soc. 127, 13462–13463 (2005).

    Article  CAS  Google Scholar 

  6. Mendels, P. et al. Quantum magnetism in the paratacamite family: towards an ideal kagome lattice. Phys. Rev. Lett. 98, 077204 (2007).

    Article  CAS  Google Scholar 

  7. Lee, S. H. et al. Quantum-spin-liquid states in the two-dimensional kagome antiferromagnets ZnxCu4–x(OD)6Cl2 . Nature Mater. 6, 853–857 (2007).

    Article  CAS  Google Scholar 

  8. Poilblanc, D. & Ralko, A. Impurity-doped kagome antiferromagnet: a quantum dimer model approach. Phys. Rev. B 82, 174424 (2010).

    Article  Google Scholar 

  9. Helton, J. S. et al. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2 . Phys. Rev. Lett. 98, 107204 (2007).

    Article  CAS  Google Scholar 

  10. Freedman, D. E. et al. Site specific X-ray anomalous dispersion of the geometrically frustrated kagome magnet, herbertsmithite, ZnCu3(OH)6Cl2 . J. Am. Chem. Soc. 132, 16185–16190 (2010).

    Article  CAS  Google Scholar 

  11. de Vries, M. A. & Harrison, A. Model's reputation restored. Nature 468, 908–909 (2010).

    Article  CAS  Google Scholar 

  12. Marcipar, L. et al. Muon-spin spectroscopy of the organometallic spin-1/2 kagome-lattice compound Cu(1,3-benzenedicarboxylate). Phys. Rev. B 80, 132402 (2009).

    Article  Google Scholar 

  13. Matan, K. et al. Pinwheel valence-bond solid and triplet excitations in the two-dimensional deformed kagome lattice. Nature Phys. 6, 865–869 (2010).

    Article  CAS  Google Scholar 

  14. Papoutsakis, D., Grohol, D. & Nocera, D. G. Magnetic properties of a homologous series of vanadium jarosite compounds. J. Am. Chem. Soc. 124, 2647–2656 (2002).

    Article  CAS  Google Scholar 

  15. Miller, W. et al. A kagome compound based on vanadium(III) with a highly frustrated ground state. Chem. Mater. 23, 1315–1322 (2011).

    Article  Google Scholar 

  16. Ballou, R., Canals, B., Elhajal, M., Lacroix, C. & Wills, A. S. Models for ordering in the jarosites kagome systems. J. Magn. Magn. Mater. 262, 465–471 (2003).

    Article  CAS  Google Scholar 

  17. Aldous, D. W., Stephens, N. F. & Lightfoot, P. The role of temperature in the solvothermal synthesis of hybrid vanadium oxyfluorides. Dalton Trans. 4207–4213 (2007).

  18. Adil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. Structural chemistry of organically-templated metal fluorides. Dalton Trans. 39, 5983–5993 (2010).

    Article  CAS  Google Scholar 

  19. Morris, R. E. Ionothermal synthesis—ionic liquids as functional solvents in the preparation of crystalline materials. Chem. Commun. 2990–2998 (2009).

  20. Parnham, E. R. & Morris, R. E. Ionothermal synthesis of zeolites, metal–organic frameworks, and inorganic–organic hybrids. Acc. Chem. Res. 40, 1005–1013 (2007).

    Article  CAS  Google Scholar 

  21. Cooper, E. R. et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 430, 1012–1016 (2004).

    Article  CAS  Google Scholar 

  22. Drylie, E. A. et al. Ionothermal synthesis of unusual choline-templated cobalt aluminophosphates. Angew. Chem. Int. Ed. 46, 7839–7843 (2007).

    Article  Google Scholar 

  23. Wei, Y. et al. Ionothermal synthesis of an aluminophosphate molecular sieve with 20-ring pore openings. Angew. Chem. Int. Ed. 49, 5367–5370 (2010).

    Article  CAS  Google Scholar 

  24. Lin, Z. J., Li, Y., Slawin, A. M. Z. & Morris, R. E. Hydrogen-bond-directing effect in the ionothermal synthesis of metal coordination polymers. Dalton Trans. 3989–3994 (2008).

  25. Lin, Z. J., Wragg, D. S., Warren, J. E. & Morris, R. E. Anion control in the ionothermal synthesis of coordination polymers. J. Am. Chem. Soc. 129, 10334–10335 (2007).

    Article  CAS  Google Scholar 

  26. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  27. DeBurgomaster, P. et al. Solvatothermal chemistry of organically templated vanadium fluorides and oxyfluorides. Inorg. Chim. Acta 363, 1102–1113 (2010).

    Article  CAS  Google Scholar 

  28. Himeur, F. et al. Increasing the dimensionality of hybrid vanadium oxyfluorides using ionothermal synthesis. Dalton Trans. 39, 6018–6020 (2010).

    Article  CAS  Google Scholar 

  29. Parnham, E. R., Drylie, E. A., Wheatley, P. S., Slawin, A. M. Z. & Morris, R. E. Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angew. Chem. Int. Ed. 45, 4962–4966 (2006).

    Article  CAS  Google Scholar 

  30. Kidder, T., Fenner, L. A., Dee, A. A., Terasaki, I., Hagiwara, M. & Wills, A. S. The giant anomalous Hall effect in the ferromagnet Fe3Sn2—a frustrated kagome metal. J. Phys. Condens. Matter 23, 112205 (2011).

    Article  Google Scholar 

  31. Mutka, H. et al. Low-temperature relaxation in kagome bilayer antiferromagnets. J. Phys. Condens. Matter 19, 145254 (2007).

    Article  Google Scholar 

  32. Pati, S. K. & Rao, C. N. R. Kagome network compounds and their novel magnetic properties. Chem. Commun. 4683–4693 (2008).

  33. Ferey, G. & Parmentier, J. The pyrochlore–HTB–ReO3 successive phase-transitions of FeF3 . Eur. J. Solid State Inorg. Chem. 31, 697–704 (1994).

    CAS  Google Scholar 

  34. Ono, T. et al. Magnetic susceptibilities in a family of S = 1/2 kagome antiferromagnets. Phys. Rev. B 79, 174407 (2009).

    Article  Google Scholar 

  35. Yamabe, Y., Ono, T., Suto, T. & Tanaka, H. S = 1/2 kagome antiferromagnets Cs2Cu3MF12 with M = Zr and Hf. J. Phys. Condens. Matter 19, 145253 (2007).

    Article  Google Scholar 

  36. Englich, U., Frommen, C. & Massa, W. Jahn–Teller ordering in Kagome-type layers of compounds A2A′Mn3F12 (A = Rb, Cs; A′ = Li, Na, K). J. Alloys Compd. 246, 155–165 (1997).

    Article  CAS  Google Scholar 

  37. Wasserscheid, P. & Keim, W. Ionic liquids—new ‘solutions’ for transition metal catalysis. Angew. Chem. Int. Ed. 39, 3772–3789 (2000).

    Article  CAS  Google Scholar 

  38. Bonhote, P., Dias, A. P., Papageorgiou, N., Kalyanasundaram, K. & Gratzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996).

    Article  CAS  Google Scholar 

  39. Morris, R. E. & Bu, X. H. Induction of chiral porous solids containing only achiral building blocks. Nature Chem. 2, 353–361 (2010).

    Article  CAS  Google Scholar 

  40. Lin, Z. J., Slawin, A. M. Z. & Morris, R. E. Chiral induction in the ionothermal synthesis of a 3-D coordination polymer. J. Am. Chem. Soc. 129, 4880–4881 (2007).

    Article  CAS  Google Scholar 

  41. Villaescusa, L. A., Wheatley, P. S., Bull, I., Lightfoot, P. & Morris, R. E. The location and ordering of fluoride ions in pure silica zeolites with framework types IFR and STF; implications for the mechanism of zeolite synthesis in fluoride media. J. Am. Chem. Soc. 123, 8797–8805 (2001).

    Article  CAS  Google Scholar 

  42. Aidoudi, F. H. et al. Ionic liquids and deep eutectic mixtures as new solvents for the synthesis of vanadium fluorides and oxyfluorides. Dalton Trans. 40, 4324–4331 (2011).

    Article  CAS  Google Scholar 

  43. Aldous, D. W., Goff, R. J., Attfield, J. P. & Lightfoot, P. Novel vanadium(IV) oxyfluorides with ‘spin-ladder’-like structures, and their relationship to (VO)2P2O7 . Inorg. Chem. 46, 1277–1282 (2007).

    Article  CAS  Google Scholar 

  44. Aldous, D. W., Slawin, A. M. Z. & Lightfoot, P. An unusual hybrid fluoride featuring a [V7F27]6− chain motif based on a pyrochlore-like building unit. J. Solid State Chem. 181, 3033–3036 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Downie, L. Clark and A. Kusmartseva for help with the magnetic measurements, and C. Tang and D. Allan for assistance with synchrotron X-ray diffraction. The authors acknowledge the Engineering and Physical Sciences Research Council (EPSRC) and Science and Technology Facilities Council (STFC) for funding. Thanks also go to A. Harrison for helpful discussions. R.E.M. is a Royal Society Industry Fellow.

Author information

Authors and Affiliations

Authors

Contributions

F.H.A. and D.W.A. carried out the synthetic chemistry. F.H.A. solved the crystal structure, with the assistance of A.M.Z.S. F.H.A. and R.J.G. analysed the magnetic data, under the guidance of J.P.A. P.L. and R.E.M. initiated the research and co-wrote the paper. P.L. coordinated the project.

Corresponding author

Correspondence to Philip Lightfoot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 644 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aidoudi, F., Aldous, D., Goff, R. et al. An ionothermally prepared S = 1/2 vanadium oxyfluoride kagome lattice. Nature Chem 3, 801–806 (2011). https://doi.org/10.1038/nchem.1129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing