Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells

Abstract

Aberrant Notch signalling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly paediatric brain neoplasms. We developed animal models of CP tumours, by inducing sustained expression of Notch1, that recapitulate properties of human CP tumours with aberrant NOTCH signalling. Whole-transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate differentiation. A Shh-driven signalling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from monociliated progenitors in the roof plate characterized by elevated Notch signalling. Abnormal SHH signalling and distinct ciliogenesis are detected in human CP tumours, suggesting the SHH pathway and cilia differentiation as potential therapeutic avenues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constitutive Notch1 signalling leads to the development of CP tumours.
Figure 2: Notch-induced CP tumours undergo enhanced proliferation and exhibit defects in differentiation.
Figure 3: Notch-induced CP tumours exhibit aberrant Shh signalling.
Figure 4: Shh drives the proliferation of Notch-induced CP tumours.
Figure 5: Notch-induced CP tumours possess a solitary primary cilium.
Figure 6: Monociliated CP tumour cells are uniquely capable of transducing Shh signals.
Figure 7: Notch-induced CP tumours arise from progenitors in the roof plate.
Figure 8: Notch-induced CP tumour cells retain properties of roof plate progenitors.

Similar content being viewed by others

References

  1. Gopal, P., Parker, J. R., Debski, R. & Parker, J. C. Jr Choroid plexus carcinoma. Arch. Pathol. Lab. Med. 132, 1350–1354 (2008).

    PubMed  Google Scholar 

  2. Ogiwara, H., Dipatri, A. J. Jr, Alden, T. D., Bowman, R. M. & Tomita, T. Choroid plexus tumors in pediatric patients. Br. J. Neurosurg. 26, 32–37 (2012).

    Article  PubMed  Google Scholar 

  3. Lun, M. P., Monuki, E. S. & Lehtinen, M. K. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat. Rev. Neurosci. 16, 445–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun, M. Z. et al. Current management of choroid plexus carcinomas. Neurosurg. Rev. 37, 179–192 (2014).

    Article  PubMed  Google Scholar 

  5. Safaee, M. et al. Surgical outcomes in choroid plexus papillomas: an institutional experience. J. Neurooncol. 113, 117–125 (2013).

    Article  PubMed  Google Scholar 

  6. Tabori, U. et al. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J. Clin. Oncol. 28, 1995–2001 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Nupponen, N. N. et al. Platelet-derived growth factor receptor expression and amplification in choroid plexus carcinomas. Mod. Pathol. 21, 265–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Beschorner, R., Waidelich, J., Trautmann, K., Psaras, T. & Schittenhelm, J. Notch receptors in human choroid plexus tumors. Histol. Histopathol. 28, 1055–1063 (2013).

    CAS  PubMed  Google Scholar 

  9. Dang, L. et al. Notch3 signaling initiates choroid plexus tumor formation. Oncogene 25, 487–491 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Fouladi, M. et al. Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J. Clin. Oncol. 29, 3529–3534 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Safaee, M. et al. Choroid plexus papillomas: advances in molecular biology and understanding of tumorigenesis. Neuro-oncol. 15, 255–267 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Ruland, V. et al. Choroid plexus carcinomas are characterized by complex chromosomal alterations related to patient age and prognosis. Genes Chromosomes Cancer 53, 373–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Hasselblatt, M. et al. TWIST-1 is overexpressed in neoplastic choroid plexus epithelial cells and promotes proliferation and invasion. Cancer Res. 69, 2219–2223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merino, D. M. et al. Molecular characterization of choroid plexus tumors reveals novel clinically relevant subgroups. Clin. Cancer Res. 21, 184–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Tong, Y. et al. Cross-species genomics identifies TAF12, NFYC, and RAD54L as choroid plexus carcinoma oncogenes. Cancer Cell 27, 712–727 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barakat, M. T., Humke, E. W. & Scott, M. P. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol. Med. 16, 337–348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, J. & Hui, C. C. Hedgehog signaling in development and cancer. Dev. Cell 15, 801–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Machold, R. & Fishell, G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48, 17–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, V. Y., Rose, M. F. & Zoghbi, H. Y. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48, 31–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Chizhikov, V. V. et al. The roof plate regulates cerebellar cell-type specification and proliferation. Development 133, 2793–2804 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Chizhikov, V. V. et al. Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc. Natl Acad. Sci. USA 107, 10725–10730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matei, V. et al. Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev. Dynam. 234, 633–650 (2005).

    Article  CAS  Google Scholar 

  23. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murtaugh, L. C., Stanger, B. Z., Kwan, K. M. & Melton, D. A. Notch signaling controls multiple steps of pancreatic differentiation. Proc. Natl Acad. Sci. USA 100, 14920–14925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nielsen, C. M. & Dymecki, S. M. Sonic hedgehog is required for vascular outgrowth in the hindbrain choroid plexus. Dev. Biol. 340, 430–437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johansson, P. A. et al. The transcription factor Otx2 regulates choroid plexus development and function. Development 140, 1055–1066 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, Y., Helms, A. W. & Johnson, J. E. Distinct activities of Msx1 and Msx3 in dorsal neural tube development. Development 131, 1017–1028 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Elsen, G. E., Choi, L. Y., Millen, K. J., Grinblat, Y. & Prince, V. E. Zic1 and Zic4 regulate zebrafish roof plate specification and hindbrain ventricle morphogenesis. Dev. Biol. 314, 376–392 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. McMahon, A. R. & Merzdorf, C. S. Expression of the zic1, zic2, zic3, and zic4 genes in early chick embryos. BMC Res. Notes 3, 167 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Marques, F. et al. Transcriptome signature of the adult mouse choroid plexus. Fluids Barriers CNS 8, 10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bowyer, J. F. et al. Comparison of the global gene expression of choroid plexus and meninges and associated vasculature under control conditions and after pronounced hyperthermia or amphetamine toxicity. BMC Genomics 14, 147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Janssen, S. F., Gorgels, T. G., Ten Brink, J. B., Jansonius, N. M. & Bergen, A. A. Gene expression-based comparison of the human secretory neuroepithelia of the brain choroid plexus and the ocular ciliary body: potential implications for glaucoma. Fluids Barriers CNS 11, 2 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xie, J., Bartels, C. M., Barton, S. W. & Gu, D. Targeting hedgehog signaling in cancer: research and clinical developments. OncoTargets Ther. 6, 1425–1435 (2013).

    Article  CAS  Google Scholar 

  34. De Smaele, E., Ferretti, E. & Gulino, A. Vismodegib, a small-molecule inhibitor of the hedgehog pathway for the treatment of advanced cancers. Curr. Opin. Investig. Drugs 11, 707–718 (2010).

    CAS  PubMed  Google Scholar 

  35. Caspary, T., Larkins, C. E. & Anderson, K. V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell 12, 767–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Choksi, S. P., Babu, D., Lau, D., Yu, X. & Roy, S. Systematic discovery of novel ciliary genes through functional genomics in the zebrafish. Development 141, 3410–3419 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thomas, J. et al. Transcriptional control of genes involved in ciliogenesis: a first step in making cilia. Biol. Cell. 102, 499–513 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Hoh, R. A., Stowe, T. R., Turk, E. & Stearns, T. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease. PLoS ONE 7, e52166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stubbs, J. L., Vladar, E. K., Axelrod, J. D. & Kintner, C. Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nat. Cell Biol. 14, 140–147 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, X., Ng, C. P., Habacher, H. & Roy, S. Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat. Genet. 40, 1445–1453 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Gomperts, B. N., Gong-Cooper, X. & Hackett, B. P. Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J. Cell Sci. 117, 1329–1337 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, J. K., Taipale, J., Young, K. E., Maiti, T. & Beachy, P. A. Small molecule modulation of smoothened activity. Proc. Natl Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rose, M. F. et al. Math1 is essential for the development of hindbrain neurons critical for perinatal breathing. Neuron 64, 341–354 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hunter, N. L. & Dymecki, S. M. Molecularly and temporally separable lineages form the hindbrain roof plate and contribute differentially to the choroid plexus. Development 134, 3449–3460 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Awatramani, R., Soriano, P., Rodriguez, C., Mai, J. J. & Dymecki, S. M. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat. Genet. 35, 70–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Broom, E. R., Gilthorpe, J. D., Butts, T., Campo-Paysaa, F. & Wingate, R. J. The roof plate boundary is a bi-directional organiser of dorsal neural tube and choroid plexus development. Development 139, 4261–4270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Imayoshi, I., Shimogori, T., Ohtsuka, T. & Kageyama, R. Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline. Development 135, 2531–2541 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Bill, B. R. et al. Development and Notch signaling requirements of the zebrafish choroid plexus. PLoS ONE 3, e3114 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Garcia-Lecea, M., Kondrychyn, I., Fong, S. H., Ye, Z. R. & Korzh, V. In vivo analysis of choroid plexus morphogenesis in zebrafish. PLoS ONE 3, e3090 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Huang, X. et al. Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development 136, 2535–2543 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lun, M. P. et al. Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J. Neurosci. 35, 4903–4916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, X. et al. Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development. Proc. Natl Acad. Sci. USA 107, 8422–8427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lehtinen, M. K. et al. The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J. Neurosci. 33, 17553–17559 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Spatazza, J. et al. Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Rep. 3, 1815–1823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. South, A. P., Cho, R. J. & Aster, J. C. The double-edged sword of Notch signaling in cancer. Semin. Cell Dev. Biol. 23, 458–464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koch, U. & Radtke, F. Notch signaling in solid tumors. Curr. Top. Dev. Biol. 92, 411–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Groth, C. & Fortini, M. E. Therapeutic approaches to modulating Notch signaling: current challenges and future prospects. Semin. Cell Dev. Biol. 23, 465–472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mahjoub, M. R. & Stearns, T. Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr. Biol. 22, 1628–1634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mahjoub, M. R. The importance of a single primary cilium. Organogenesis 9, 61–69 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stasiulewicz, M. et al. A conserved role for Notch signaling in priming the cellular response to Shh through ciliary localisation of the key Shh transducer Smo. Development 142, 2291–2303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kong, J. H. et al. Notch activity modulates the responsiveness of neural progenitors to sonic hedgehog signaling. Dev. Cell 33, 373–387 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marcet, B. et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat. Cell Biol. 13, 693–699 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Morimoto, M. et al. Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J. Cell Sci. 123, 213–224 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tan, F. E. et al. Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development 140, 4277–4286 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Imai, M., Tominaga, J. & Matsumae, M. Choroid plexus papilloma originating from the cerebrum parenchyma. Surg. Neurol. Int. 2, 151 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Louis DN, O. H., Wiestler, O. D. & Cavenee, W. K. (eds) WHO Classification of Tumours of the Central Nervous System (IARC Press, 2007).

  67. Zhao, H., Ayrault, O., Zindy, F., Kim, J. H. & Roussel, M. F. Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes Dev. 22, 722–727 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, J., Lee, J. J., Kim, J., Gardner, D. & Beachy, P. A. Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc. Natl Acad. Sci. USA 107, 13432–13437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yaylaoglu, M. B. et al. Comprehensive expression atlas of fibroblast growth factors and their receptors generated by a novel robotic in situ hybridization platform. Dev. Dyn. 234, 371–386 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the laboratory for helpful discussions. We are grateful to K. Millen (Seattle Children’s Hospital Research Institute, USA), J. Kim (University of Texas Southwestern Medical Center, USA) and R. Kageyama (Institute for Virus Research Kyoto University, Japan) for providing the Lmx1a–Cre transgenic mouse strain, Smo antibody, and Hes1 antibodies, respectively, and C. Eberhart (Johns Hopkins University School of Medicine, USA), M. Taylor (The Hospital for Sick Children, Canada) and S. Santagata (Boston Children’s Hospital, USA) for providing human CP tumour samples. We wish to acknowledge the Labatt Brain Tumour Research Centre Tumour and Tissue Repository, which is supported by b.r.a.i.n child and Meagan’s Walk. We are indebted to C. Evans, A. Kelsch and E. Grandprey for excellent technical assistance. We thank W.K. Miskimins and K. Surendran for helpful suggestions, and J. Tao and D. Maher for critical reading of the manuscript and helpful discussions. This project is supported by: Boston Children’s Hospital IDDRC P30 HD18655, Sanford Research, and Institutional Development Awards (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under grant number 5P20GM103548 (Cancer), which also supports Cores at Sanford Research together with NIH grant 1P20GM103620-01A1 (Pediatrics). The RNA In Situ Hybridization Core facility at Baylor College of Medicine is supported by a Shared Instrumentation grant from the NIH (1S10OD016167). Additional support was provided by the National Brain Tumor Society (R.J.W.-R.).

Author information

Authors and Affiliations

Authors

Contributions

L.L. and H.Z. conceived and planned the project, and wrote the manuscript. H.G.W.L. and M.L.C. reviewed diagnoses of human tissue samples. J.W., J.O., R.J.W.-R. and U.S. analysed morphological characters and gene expression patterns of human tumour samples. M.P.L. and M.K.L. performed cilia and gene expression analyses in human tissue samples. K.B.G. provided assistance with gene expression analysis. E.Z. conduced RNA-seq data processing and analysis. J.L.S. provided technical advice, support and data analysis for electron microscopy studies.

Corresponding author

Correspondence to Haotian Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Morphological and gene expression analysis of CPs in Mcre;NICD1 mice.

(a) EYFP expression (green, arrowheads) detected with a GFP antibody demarcates CP epithelial cells derived from Atoh1+ progenitors in Mcre;EYFP mice, while GFP expression (green) labels NICD1+ tumour cells in Mcre;NICD1 mice at P0, P7, P14, P21, and P90. The expression of Otx2 (red) marks CP epithelial cells. DAPI staining (blue) labels nuclei. Scale bar: 25 μm. (b) H&E staining of CPs from Mcre;NICD1 mice and wild type (WT) littermates at P0, P7, P14, and P21. Boxed regions of the abnormal growth of CP in the enlarged 4th ventricle of Mcre;NICD1 animals are shown in higher magnification. Notice that wild type CP epithelium exhibits the ‘hobnail’ configuration (arrowheads), while abnormal CP growth in Mcre;NICD1 mice displays a ‘flattened’ appearance on ventricular surfaces (arrow). Scale bars: white, 250 μm; black: 40 μm. (c) The expression of Hes1 (red) in CPs from Mcre;NICD1 mice. GFP expression (green) labels NICD1+ CP cells. Dotted lines mark the boundary between CP epithelial cells and NICD1+ cells. DAPI staining (blue) labels nuclei. Scale bar: 25 μm. (d) Western blot analysis of Hes1 expression in CP tumours from Mcre;NICD1 mice and wild type (WT) CPs at P0, P7 and P90. β-actin serves as loading control. Molecular size marker and representative image of unprocessed blots can be found in Supplementary Figure 9.

Supplementary Figure 2 Morphological analysis of CPs in Lcre;NICD1 mice.

(a) Bright field images of brain hemispheres in Lcre;NICD1mice and wild type (WT) littermates at P14. Notice that Lcre;NICD1 mice develop abnormal growth of CP (dotted red lines) and display enlarged lateral ventricle (arrows). Vesicular sacs with accumulated cerebrospinal fluid are shown (asterisks). Scale bar: 1 mm. (b) H&E staining of CPs in hindbrain and lateral ventricles of Lcre;NICD1 animals and wild type littermates at P7, P14, and P30. Notice that compared to CPs in wild type (WT) littermates (arrowheads), Lcre;NICD1 mice develop abnormal CP growth (arrows) and exhibit enlarged 4th and lateral ventricles. Vesicular sacs with accumulated cerebrospinal fluid are shown (asterisks). Scale bars: white, 100 μm; black: 300 μm.

Supplementary Figure 3 Analysis of proliferation and gene expression in CP tumours from Lcre;NICD1 mice.

(a) The expression of Ki-67 in tumour cells in the hindbrain and lateral ventricles of Lcre;NICD1 animals at P0, P7, P14, and P90, respectively. Dotted lines mark the boundary of tumours in lateral ventricles. Notice that the expression of Ki-67 in tumour cells is gradually reduced over time. Scale bar: 25 μ m. (b) The expression of Lmx1a, Otx2, Aqp1, and cytokeratins in CP tumours in the hindbrain and lateral ventricles of Lcre;NICD1 mice at P7. CPs at these sites from P7 wild type (WT) littermates serve as control. Dotted lines mark the boundary of the 4th and lateral ventricles. Notice that tumour cells display reduced expression of Aqp1 and cytokeratins. Scale bar: 25 μm.

Supplementary Figure 4 Analysis of CP tumours from Mcre;NICD1 mice and CPs of wild type (WT) mice.

(a) Results of 5-ethynyl-2’-deoxyuridine (EdU) incorporation assays are shown for tumours at P0, P7, and P14, respectively. EdU staining (magenta) labels cells in S-phase of the cell cycle. GFP expression (green) labels NICD1+ tumour cells. Dotted lines mark the boundary between GFP+ tumour cells and CP epithelium. DAPI staining (blue) labels nuclei. Scale bar: 25 μm. (b)The expression of cyclin D1 (Ccnd1) in tumours from Mcre;NICD1 mice at P0 and P14, respectively. Aqp1 expression (green) labels CP epithelium, while Ccnd1 expression (red) labels proliferating cells. Dotted lines mark the boundary between proliferative tumour cells and Aqp1+ epithelial cells. DAPI staining (blue) labels nuclei. Scale bar: 25 μm. (c) The presence of EdU-incorporating cells (magenta) and Cdkn1b+ (p27 Kip1, green) cells in tumours and WT at P7. Though tumours contain abundant cells positive for EdU or p27 expression, staining for EdU or p27 is mutually exclusive. Notice that p27+ or EdU-incorporating cells are absent in wild type CPs despite positive staining in neighboring cerebellum (Cb). Scale bar: 25 μm. (d) The expression of Cleaved Caspase-3 in CP tumours and WT CPs at P7. Cleaved Caspase-3 expression (red) is undetectable in tumour and CPs. DAPI staining (blue) marks nuclei. Scale bar: 25 μm. (e) Gene expression in WT CP epithelium at P7. The expression of Lmx1a (red), Otx2 (red), and Aqp1 (red) labels CP epithelial cells. DAPI staining (blue) marks nuclei. Scale bar: 25 μ m. (f) The expression of mesenchyme marker MafB in CPs from Mcre;NICD1 animals at P7. GFP (green) labels NICD1+ tumour cells. Dotted lines mark the boundary between GFP+ tumour cells and CP epithelium. MafB expression (red) is detected in normal CP tissue, but absent from GFP+ tumour cells. DAPI staining (blue) marks nuclei. Scale bar: 25 μm.

Supplementary Figure 5 Morphological and gene expression analysis of CPs from treated wild type animals.

H&E staining of CPs from wild type mice treated with either vismodegib or vehicle from day E15.5 for 4 days. The expression of Ki-67 (red) labels proliferating cells. Lmx1a expression (green) marks CP epithelial cells. DAPI staining (blue) labels nuclei. Notice that Ki-67+ proliferative cells are present in neighboring cerebellum (Cb); however, there is no Ki-67+ cells in CP epithelium. Scale bar: 25 μm.

Supplementary Figure 6 Transcriptome, epigenome, and genome analysis of human CP tumours.

(a) Hierarchical clustering of human CPPs and CPCs based on the expression of roof plate genes (CPP: n = 24 tumours from 24 individuals; CPC: n = 15 tumours from 15 individuals; one-way ANOVA, FDR < 0.05, fold change is shown). (b) MetaCore gene enrichment analysis of differentially methylated genes between human CPPs and CPCs (CPP: n = 5 tumours from 5 individuals; CPC: n = 15 tumours from 15 individuals). (c) Schematic illustration of results from MetaCore network analysis of differentially methylated genes between human CPPs and CPCs shown in (b). The red colored nodes indicate relatively higher expression and green nodes indicate relatively lower expression in CPPs compared to CPCs. (d) MetaCore gene enrichment analysis of copy number variations in human CP tumours (CPP: n = 37 tumours from 37 individuals; CPC: n = 38 tumours from 38 individuals). (e) Representative images show in-situ hybridization analysis of SHH expression in normal human CP (n = 5 CPs from 5 disease-free individuals) and human CP tumours (CPP: n = 11 tumour specimens from 10 individuals; CPC: n = 10 tumours from 10 individuals). Notice that SHH expression is present in normal hindbrain CP epithelium (arrowheads) and tumour tissue (arrows). Signal intensity varied among samples, likely as a result of brain regions examined, conditions under which specimens were collected and stored, and the length of time of specimens in storage. Representative images are shown. Scale bar: 50 μm.

Supplementary Figure 7 Analysis of primary cilia and gene expression.

(a) Transmission electron micrograph of primary cilia on CP tumour cells (arrow) or CP epithelium (arrowheads). Scale bar: 0.5 μm. (b) The expression of Arl13b (red) and γ-tubulin (red) in EYFP+ CP epithelial cells of Mcre;EYFP mice. EYFP (green) detected with a GFP antibody demarcates epithelial cells derived from Atoh1+ progenitors in Mcre;EYFP mice, while Aqp1 (yellow) marks differentiated epithelial cells. DAPI staining (blue) labels nuclei. Inset pictures show high magnification images of EYFP+ (arrows, upper) or EYFP epithelial cells (arrowheads, lower). Scale bar: 10 μm. (c) The expression of Foxj1 (red) in CP tumour cells from Mcre;NICD1 mice at P14. Dotted lines mark boundary between tumour cells and Aqp1+ (green) CP epithelium. DAPI staining (blue) labels nuclei. Notice that Foxj1 expression is reduced in tumour cells compared to epithelial cells. Scale bar: 25 μm. (d) Schematic illustration of hindbrain roof plate and CP in mouse embryo at day E14.5. Solid line marks the transverse plane across the cerebellum, roof plate, and CP. H&E staining and the diagram show structures in this plane. LRL: lower rhombic lip; URL: upper rhombic lip; LRP: lower roof plate; URP: upper roof plate; CB: cerebellum. Scale bar: 1 mm. (e) Cilia pattern in cells within the roof plate and CP epithelium of wild type animals is shown at day E14.5. Arl13b (red) and γ-tubulin expression (red) marks primary cilia and basal bodies, respectively. DAPI staining (blue) labels nuclei. Scale bar: 10 μm. (f) Representative images show the expression of acetylated α-tubulin (act-α-tubulin, red) and AQP1 (red) in normal human CP and human CP tumours. solitary cilium (arrows) or multiple cilia (arrowheads) are magnified in inset pictures. Hoechst staining (blue) labels nuclei. Scale bar: 10 μm. (g) The expression Lmx1a (red) and Ki-67 (red) in CP cells from Mcre;NICD1 mice cultured in the presence of serum. GFP (green) labels NICD1+ tumour cells, while Aqp1 marks epithelial cells. DAPI staining (blue) labels nuclei. Scale bar: 25 μm.

Supplementary Figure 8 Notch-induced CP tumours arise from progenitors in the roof plate.

(a) Atoh1:EGFP expression in Math1M1GFP mice at day E14.5 is detected with a GFP antibody and shown in green signals. Otx2 expression (red) labels the roof plate (marked by dotted lines), while DAPI staining (blue) marks nuclei. Notice that Atoh1:EGFP+ progenitors (arrows) are present in Otx2+ upper roof plate, but absent in lower roof plate. Scale bar: 50 μm. (b) Gene expression in CPs from Mcre:NICD1 mice at day E14.5. GFP (green) marks tumour cells Ki-67 expression (red) labels proliferating cells, and Aqp1 expression (red) marks differentiated epithelial cells. DAPI staining (blue) labels nuclei. Scale bar: 30 μm. (c) Analysis of gene expression and proliferation of tumour cells and progenitors within hindbrain roof plate in Mcre;NICD1and wild type (WT) mice, respectively, at day E14.5. The expression of Lmx1a (red) marks the roof plate and CP lineage. While Ki-67 expression (green) labels proliferating cells, Aqp1 expression (green) marks differentiated epithelial cells White dotted lines mark domain of progenitors (Lmx1a+/Ki-67+/Aqp1) in hindbrain roof plate. Boxed regions in upper roof plate are shown in higher magnification. Red bracket lines mark differentiated epithelial cells (Lmx1a+/Ki-67/Aqp1+). Stars demarcate tumour cells (Lmx1a+/Ki-67+/Aqp1). Scale bar: 25 μm.

Supplementary Figure 9 Representative unprocessed scanned images of blots.

Western blot analysis of Hes1 (a), Aqp1 and Otx2 (b), and Ccnd1 (c) expression in CP tumours from Mcre;NICD1 mice and CPs from wild type (WT) mice at different time points. β-actin serves as loading control. N/A: protein samples for unrelated study run on the same gel (c).

Supplementary information

Supplementary Information

Supplementary Information (PDF 2410 kb)

Supplementary Table 1

Supplementary Information (XLSX 447 kb)

Supplementary Table 2

Supplementary Information (XLSX 200 kb)

Supplementary Table 3

Supplementary Information (XLSX 55 kb)

Supplementary Table 4

Supplementary Information (XLSX 332 kb)

Supplementary Table 5

Supplementary Information (XLSX 149 kb)

Supplementary Table 6

Supplementary Information (XLSX 544 kb)

Supplementary Table 7

Supplementary Information (XLSX 13 kb)

Supplementary Table 8

Supplementary Information (XLSX 12 kb)

Supplementary Table 9

Supplementary Information (XLSX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Grausam, K., Wang, J. et al. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. Nat Cell Biol 18, 418–430 (2016). https://doi.org/10.1038/ncb3327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3327

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer