Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nrf2 regulates haematopoietic stem cell function

Abstract

Coordinating the balance between haematopoietic stem cell (HSC) quiescence and self-renewal is crucial for maintaining haematopoiesis lifelong. Equally important for haematopoietic function is modulating HSC localization within the bone marrow niches, as maintenance of HSC function is tightly controlled by a complex network of intrinsic molecular mechanisms and extrinsic signalling interactions with their surrounding microenvironment1. In this study we demonstrate that nuclear factor erythroid 2-related factor 2 (Nfe2l2, or Nrf2), well established as a global regulator of the oxidative stress response, plays a regulatory role in several aspects of HSC homeostasis. Nrf2 deficiency results in an expansion of the haematopoietic stem and progenitor cell compartment due to cell-intrinsic hyperproliferation, which was accomplished at the expense of HSC quiescence and self-renewal. We further show that Nrf2 modulates both migration and retention of HSCs in their niche. Moreover, we identify a previously unrecognized link between Nrf2 and CXCR4, contributing, at least partially, to the maintenance of HSC function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nrf2−/− mice exhibit an expanded haematopoietic stem and progenitor pool.
Figure 2: Nrf2 regulates HSPC proliferation and differentiation intrinsically.
Figure 3: Nrf2 maintains HSC quiescence and self-renewal.
Figure 4: Nrf2 governs HSPC retention and migration to the bone marrow niche.
Figure 5: Nrf2 mediates HSPC functions through CXCR4.

Similar content being viewed by others

References

  1. Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol. 8, 290–301 (2008).

    Article  CAS  Google Scholar 

  2. Zhang, J. & Li, L. Stem cell niche: microenvironment and beyond. J. Biol. Chem. 283, 9499–9503 (2008).

    Article  CAS  Google Scholar 

  3. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    CAS  PubMed  Google Scholar 

  4. Yun, Z., Maecker, H. L., Johnson, R. S. & Giaccia, A. J. Inhibition of PPAR γ2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev. Cell 2, 331–341 (2002).

    Article  CAS  Google Scholar 

  5. Yun, Z., Lin, Q. & Giaccia, A. J. Adaptive myogenesis under hypoxia. Mol. Cell. Biol. 25, 3040–3055 (2005).

    Article  CAS  Google Scholar 

  6. Ezashi, T., Das, P. & Roberts, R. M. Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl Acad. Sci. USA 102, 4783–4788 (2005).

    Article  CAS  Google Scholar 

  7. Mazumdar, J. et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nat. Cell Biol. 12, 1007–1013 (2010).

    Article  CAS  Google Scholar 

  8. Takubo, K. et al. Regulation of the HIF- 1α level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010).

    Article  CAS  Google Scholar 

  9. Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537–541 (2009).

    Article  CAS  Google Scholar 

  10. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  Google Scholar 

  11. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006).

    Article  CAS  Google Scholar 

  12. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    Article  CAS  Google Scholar 

  13. Moi, P., Chan, K., Asunis, I., Cao, A. & Kan, Y. W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region. Proc. Natl Acad. Sci. USA 91, 9926–9930 (1994).

    Article  CAS  Google Scholar 

  14. Li, W. & Kong, A. N. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog. 48, 91–104 (2009).

    Article  CAS  Google Scholar 

  15. Nguyen, T., Nioi, P. & Pickett, C. B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284, 13291–13295 (2009).

    Article  CAS  Google Scholar 

  16. Itoh, K. et al. Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313–322 (1997).

    Article  CAS  Google Scholar 

  17. Ishii, T. et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 275, 16023–16029 (2000).

    Article  CAS  Google Scholar 

  18. Chan, K., Lu, R., Chang, J. C. & Kan, Y. W. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc. Natl Acad. Sci. USA 93, 13943–13948 (1996).

    Article  CAS  Google Scholar 

  19. Hochmuth, C. E., Biteau, B., Bohmann, D. & Jasper, H. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8, 188–199 (2011).

    Article  CAS  Google Scholar 

  20. Zuniga-Pflucker, J. C. T-cell development made simple. Nat. Rev. Immunol. 4, 67–72 (2004).

    Article  CAS  Google Scholar 

  21. Tzeng, Y. S. et al. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117, 429–439 (2011).

    Article  CAS  Google Scholar 

  22. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    Article  CAS  Google Scholar 

  23. Nie, Y., Han, Y. C. & Zou, Y. R. CXCR4 is required for the quiescence of primitive hematopoietic cells. J. Exp. Med. 205, 777–783 (2008).

    Article  CAS  Google Scholar 

  24. Motohashi, H. et al. NF-E2 domination over Nrf2 promotes ROS accumulation and megakaryocytic maturation. Blood 115, 677–686 (2010).

    Article  CAS  Google Scholar 

  25. Kuroha, T. et al. Ablation of Nrf2 function does not increase the erythroid or megakaryocytic cell lineage dysfunction caused by p45 NF-E2 gene disruption. J. Biochem. 123, 376–379 (1998).

    Article  CAS  Google Scholar 

  26. Juntilla, M. M. et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115, 4030–4038 (2010).

    Article  CAS  Google Scholar 

  27. Banning, A., Deubel, S., Kluth, D., Zhou, Z. & Brigelius-Flohe, R. The GI-GPx gene is a target for Nrf2. Mol. Cell. Biol. 25, 4914–4923 (2005).

    Article  CAS  Google Scholar 

  28. Tullet, J. M. et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132, 1025–1038 (2008).

    Article  CAS  Google Scholar 

  29. Papaconstantinou, J. Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol. Cell. Endocrinol. 299, 89–100 (2009).

    Article  CAS  Google Scholar 

  30. Geiger, H. & Rudolph, K. L. Aging in the lympho-hematopoietic stem cell compartment. Trends Immunol. 30, 360–365 (2009).

    Article  CAS  Google Scholar 

  31. Zakrzewski, J. L. et al. Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat. Med. 12, 1039–1047 (2006).

    Article  CAS  Google Scholar 

  32. Hayashi, H. & Kume, T. Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration. Biochem. Biophys. Res. Commun. 367, 584–589 (2008).

    Article  CAS  Google Scholar 

  33. Na, I. K. et al. Concurrent visualization of trafficking, expansion, and activation of T lymphocytes and T-cell precursors in vivo. Blood 116, e18–e25 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Chan (University of California, Irvine, USA) for providing the Nrf2−/− mice; the staff of the Memorial Sloan-Kettering Cancer Center Research Animal Resources Center for excellent animal care; and the staff of the Flow Cytometry Core Facility and M. S. Jiao of the Comparative Pathology Laboratories for assistance with sample preparation. This research was supported by National Institutes of Health award numbers RO1-HL069929 (M.R.M.v.d.B.), R01-AI100288 (M.R.M.v.d.B.), R01-AI080455 (M.R.M.v.d.B.), R01-AI101406 (M.R.M.v.d.B.) and P01-CA023766 (ROR). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Support was also received from the Radiation Effects Research Foundation (RERF-NIAID; M.R.M.v.d.B.), The Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center funded by W. H. Goodwin and A. Goodwin, The Lymphoma Foundation, Alex’s Lemonade Stand, The Geoffrey Beene Cancer Research Center at Memorial Sloan-Kettering Cancer Center, and The Peter Solomon Fund. J.A.D. was supported by an Australian National Health and Medical Research Council Biomedical Training Fellowship and a Research Fellowship from the Leukemia and Lymphoma Society. E.V. was supported by a fellowship from the Italian Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

J.J.T. designed and performed the experiments. J.A.D., K.T., J.S. and E.V. assisted with experiments and provided substantial intellectual inputs. N.V.S., M.L.W., O.M.S. and L.F.Y. assisted with experiments. A. M. Holland, A. M. Hanash, A.G. and H.H.T. provided intellectual inputs. M.A.S.M. and M.R.M.v.d.B. guided the research. J.J.T., J.A.D., K.T., A. M. Holland, Y.S. and M.R.M.v.d.B. wrote the manuscript.

Corresponding author

Correspondence to Marcel R. M. van den Brink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, J., Dudakov, J., Takahashi, K. et al. Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol 15, 309–316 (2013). https://doi.org/10.1038/ncb2699

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2699

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing