Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endocytosis by Numb breaks Notch symmetry at cytokinesis

Abstract

Cell-fate diversity can be generated by the unequal segregation of the Notch regulator Numb at mitosis in both vertebrates and invertebrates. Whereas the mechanisms underlying unequal inheritance of Numb are understood, how Numb antagonizes Notch has remained unsolved. Live imaging of Notch in sensory organ precursor cells revealed that nuclear Notch is detected at cytokinesis in the daughter cell that does not inherit Numb. Numb and Sanpodo act together to regulate Notch trafficking and establish directional Notch signalling at cytokinesis. We propose that unequal segregation of Numb results in increased endocytosis in one daughter cell, hence asymmetry of Notch at the cytokinetic furrow, directional signalling and binary fate choice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch localization at the pIIa/pIIb interface.
Figure 2: Live analysis of Notch signalling.
Figure 3: Regulation of Notch by Numb and Spdo at cytokinesis.
Figure 4: Notch is endocytosed from the pIIa/pIIb interface.
Figure 5: Endocytosis of Notch by Spdo.
Figure 6: Endocytosis of Spdo–Notch complexes.

Similar content being viewed by others

References

  1. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).

    Article  CAS  Google Scholar 

  2. Gho, M. & Schweisguth, F. Frizzled signalling controls orientation ofasymmetric sense organ precursor cell divisions in Drosophila. Nature 393, 178–181 (1998).

    Article  CAS  Google Scholar 

  3. Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  Google Scholar 

  4. Wirtz-Peitz, F., Nishimura, T. & Knoblich, J. A. Linking cell cycle to asymmetric division: aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135, 161–173 (2008).

    Article  CAS  Google Scholar 

  5. Knoblich, J. A. Mechanisms of asymmetric stem cell division. Cell 132, 583–597 (2008).

    Article  CAS  Google Scholar 

  6. Guo, M., Jan, L. Y. & Jan, Y. N. Control of daughter cell fates during asymmetric division: Interaction of Numb and Notch. Neuron 17, 27–41 (1996).

    Article  Google Scholar 

  7. Berdnik, D., Torok, T., Gonzalez-Gaitan, M. & Knoblich, J. The endocytic protein α-adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev. Cell 3, 221–231 (2002).

    Article  CAS  Google Scholar 

  8. Wakamatsu, Y., Maynard, T. M., Jones, S. U. & Weston, J. A. NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23, 71–81 (1999).

    Article  CAS  Google Scholar 

  9. Jory, A. et al. Numb promotes an increase in skeletal muscle progenitor cells in the embryonic somite. Stem Cells 27, 2769–2780 (2009).

    Article  CAS  Google Scholar 

  10. Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    Article  CAS  Google Scholar 

  11. Shen, Q., Zhong, W., Jan, Y. N. & Temple, S. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129, 4843–4853 (2002).

    CAS  PubMed  Google Scholar 

  12. Cayouette, M. & Raff, M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nat. Neurosci. 5, 1265–1269 (2002).

    Article  CAS  Google Scholar 

  13. Gulino, A., Di Marcotullio, L. & Screpanti, I. The multiple functions of Numb. Exp. Cell Res 316, 900–906 (2010).

    Article  CAS  Google Scholar 

  14. Stylianou, S., Clarke, R. B. & Brennan, K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 66, 1517–1525 (2006).

    Article  CAS  Google Scholar 

  15. Santolini, E. et al. Numb is an endocytic protein. J. Cell Biol. 151, 1345–1352 (2000).

    Article  CAS  Google Scholar 

  16. Langevin, J. et al. Lethal giant larvae controls the localization of notch-signaling regulators numb, neuralized, and Sanpodo in Drosophila sensory-organ precursor cells. Curr. Biol. 15, 955–962 (2005).

    Article  CAS  Google Scholar 

  17. Roegiers, F., Jan, L. Y. & Jan, Y. N. Regulation of membrane localization of Sanpodo by lethal giant larvae and neuralized in asymmetrically dividing cells of Drosophila sensory organs. Mol. Biol. Cell 16, 3480–3487 (2005).

    Article  CAS  Google Scholar 

  18. Hutterer, A. & Knoblich, J. A. Numb and α-Adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs. EMBO Rep. 6, 836–842 (2005).

    Article  CAS  Google Scholar 

  19. Tong, X. et al. Numb independently antagonizes Sanpodo membrane targeting and Notch signaling in Drosophila sensory organ precursor cells. Mol. Biol. Cell 21, 802–810 (2010).

    Article  CAS  Google Scholar 

  20. O’Connor-Giles, K. M. et al. Numb inhibits membrane localization of Sanpodo, a four-pass transmembrane protein, to promote asymmetric divisions in Drosophila. Dev. Cell 5, 231–243 (2003).

    Article  Google Scholar 

  21. Babaoglan, A. B. et al. Sanpodo: a context-dependent activator and inhibitor of Notch signaling during asymmetric divisions. Development 136, 4089–4098 (2009).

    Article  CAS  Google Scholar 

  22. Ramos, R. G., Grimwade, B. G., Wharton, K. A., Scottgale, T. N. & Artavanis-Tsakonas, S. Physical and functional definition of the Drosophila Notch locus by P element transformation. Genetics 123, 337–348 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Benhra, N., Vignaux, F., Dussert, A., Schweisguth, F. & Le Borgne, R. Neuralized promotes basal to apical transcytosis of Delta in epithelial cells. Mol. Biol. Cell 21, 2078–2086 (2010).

    Article  CAS  Google Scholar 

  24. Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo. Cell 93, 649–660 (1998).

    Article  CAS  Google Scholar 

  25. Lecourtois, M. & Schweisguth, F. Indirect evidence for Delta-dependent intracellular processing of notch in Drosophila embryos. Curr. Biol. 8, 771–774 (1998).

    Article  CAS  Google Scholar 

  26. Benhra, N. et al. AP-1 Controls the trafficking of Notch and Sanpodo toward E-cadherin junctions in sensory organ precursors. Curr. Biol. 21, 87–95 (2010).

    Article  Google Scholar 

  27. Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  Google Scholar 

  28. Coumailleau, F., Furthauer, M., Knoblich, J. A. & Gonzalez-Gaitan, M. Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division. Nature 458, 1051–1055 (2009).

    Article  CAS  Google Scholar 

  29. Gomes, J. E., Corado, M. & Schweisguth, F. Van Gogh and Frizzled act redundantly in the Drosophila sensory organ precursor cell to orient its asymmetric division. PLoS One 4, e4485 (2009).

    Article  Google Scholar 

  30. Huang, J., Zhou, W., Dong, W., Watson, A. M. & Hong, Y. Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc. Natl Acad. Sci. USA 106, 8284–8289 (2009).

    Article  CAS  Google Scholar 

  31. Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L. & Montague, R. A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471–490 (2000).

    Article  CAS  Google Scholar 

  32. Venken, K. J., He, Y., Hoskins, R. A. & Bellen, H. J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    Article  CAS  Google Scholar 

  33. Gervais, L., Claret, S., Januschke, J., Roth, S. & Guichet, A. PIP5K-dependent production of PIP2 sustains microtubule organization to establish polarized transport in the Drosophila oocyte. Development 135, 3829–3838 (2008).

    Article  CAS  Google Scholar 

  34. Gho, M., Lecourtois, M., Geraud, G., Posakony, J. W. & Schweisguth, F. Subcellular localization of Suppressor of Hairless in Drosophila sense organ cells during Notch signalling. Development 122, 1673–1682 (1996).

    CAS  PubMed  Google Scholar 

  35. Le Borgne, R. & Schweisguth, F. Unequal segregation of Neuralized biases Notch activation during asymmetric cell division. Dev. Cell 5, 139–148 (2003).

    Article  CAS  Google Scholar 

  36. Bellaiche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H. & Schweisguth, F. Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nat. Cell Biol. 3, 50–57 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Baudouin, K. Basler, H. Bellen, R. Bodmer, P. Bryant, S. Eaton, M. Gonzalez-Gaitan, Y. Hong, J. Knoblich, R. Le Borgne, T. Lecuit, Y. Hong, N. Perrimon, F. Roegiers, J. Skeath, R. Ueda, A. Wodarz, W. Zhong, the Bloomington Drosophila Stock Center, the Developmental Studies Hybridoma Bank, the Drosophila Genomics Resource Center and Flybase for flies, antibodies, DNA and other resources. We are very grateful to H. Rouault for the custom design of a temperature-controlled stage. We thank R. Le Borgne, A. Martinez-Arias, O. Pourquié, C. Saleh and laboratory members for discussions and critical reading. This work was funded by the Centre National de la Recherche Scientifique, Institut Pasteur, the National Agency for Research (BLAN-05-0277) and the Fondation pour la Recherche Médicale (DEQ20100318284).

Author information

Authors and Affiliations

Authors

Contributions

F.S. designed the study, carried out microscopy work and wrote the manuscript. N.V. generated tagged Notch flies. L.C. carried out all genetic and cell biology experiments and contributed to imaging.

Corresponding authors

Correspondence to Nicolas Vodovar or François Schweisguth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1621 kb)

Supplementary Movie 1

Supplementary Information (MOV 18263 kb)

Supplementary Movie 2

Supplementary Information (MOV 7209 kb)

Supplementary Movie 3

Supplementary Information (MOV 7565 kb)

Supplementary Movie 4

Supplementary Information (MOV 9934 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couturier, L., Vodovar, N. & Schweisguth, F. Endocytosis by Numb breaks Notch symmetry at cytokinesis. Nat Cell Biol 14, 131–139 (2012). https://doi.org/10.1038/ncb2419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing