Review Article

Coherent perfect absorbers: linear control of light with light

  • Nature Reviews Materials 2, Article number: 17064 (2017)
  • doi:10.1038/natrevmats.2017.64
  • Download Citation
Published online:

Abstract

The absorption of electromagnetic energy by a material is a phenomenon that underlies many applications, including molecular sensing, photocurrent generation and photodetection. Typically, the incident energy is delivered to the system through a single channel, for example, by a plane wave incident on one side of an absorber. However, absorption can be made much more efficient by exploiting wave interference. A coherent perfect absorber is a system in which the complete absorption of electromagnetic radiation is achieved by controlling the interference of multiple incident waves. Here, we review recent advances in the design and applications of such devices. We present the theoretical principles underlying the phenomenon of coherent perfect absorption and give an overview of the photonic structures in which it can be realized, including planar and guided-mode structures, graphene-based systems, parity-symmetric and time-symmetric structures, 3D structures and quantum-mechanical systems. We then discuss possible applications of coherent perfect absorption in nanophotonics, and, finally, we survey the perspectives for the future of this field.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & Fundamentals of Photonics 2nd edn (Wiley, 2013).

  2. 2.

    Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

  3. 3.

    Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, 1990).

  4. 4.

    Absorbent body for electromagnetic waves. US Patent 2599944 (1952).

  5. 5.

    & Reflection properties of the Salisbury screen. IEEE Trans. Antennas Propag. 36, 1443–1454 (1988).

  6. 6.

    & Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).

  7. 7.

    , , & Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

  8. 8.

    , & Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. 3, 037001 (2015).

  9. 9.

    & Optical absorbers based on strong interference in ultra-thin films. Laser Photonics Rev. 749, 735–749 (2016).

  10. 10.

    & Radar Absorbing Materials — From Theory to Design and Characterization. (Kluwer Academic Publishers, 1996).

  11. 11.

    , , , & Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010).

  12. 12.

    et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12, 304–309 (2013).

  13. 13.

    & Handbook of Photovoltaic Science and Engineering (Wiley, 2008).

  14. 14.

    & Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391–400 (2010).

  15. 15.

    , , & Photodetection with active optical antennas. Science 332, 702–704 (2011).

  16. 16.

    , & Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000).

  17. 17.

    , & Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. Opt. Lett. 31, 2045–2047 (2006).

  18. 18.

    , , & Total absorption in asymmetric hyperbolic media. Sci. Rep. 3, 2662 (2013).

  19. 19.

    , , , & Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal. Phys. Rev. B 92, 201405(R) (2015).

  20. 20.

    et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

  21. 21.

    , & Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012).

  22. 22.

    , & Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light Sci. Appl. 4, e292 (2015).

  23. 23.

    , , , & Two-dimensional control of light with light on metasurfaces. Light Sci. Appl. 5, e16070 (2016).

  24. 24.

    , , & Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl. Phys. Lett. 104, 102–106 (2014).

  25. 25.

    , , & Acoustic coherent perfect absorbers. New J. Phys. 16, 033026 (2014).

  26. 26.

    , , , & Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014).

  27. 27.

    et al. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Sci. Rep. 5, 12139 (2015).

  28. 28.

    et al. Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption. Nat. Phys. 10, 830–834 (2014).

  29. 29.

    et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat. Commun. 6, 7031 (2015).

  30. 30.

    & Anderson localization in two dimensions. Phys. Rev. Lett. 47, 882–885 (1981).

  31. 31.

    , & Total absorption of light by a nanoparticle: an electromagnetic sink in the optical regime. Opt. Lett. 38, 818–820 (2013).

  32. 32.

    The Finite Element Method in Electromagnetics, 3rd ed. (Wiley–IEEE Press, 2014).

  33. 33.

    Resonance mode expansions and exact solutions for nonuniform gratings. Phys. Rev. E 54, 2963–2975 (1996).

  34. 34.

    , & Temporal coupled-mode theory and the presence of non- orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40, 1511–1518 (2004).

  35. 35.

    et al. Polarization-independent coherent perfect absorption by a dipole-like meta-surface. Opt. Lett. 38, 3086–3088 (2013).

  36. 36.

    , , , & Critical route for coherent perfect absorption in a Fano resonance plasmonic system. Appl. Phys. Lett. 105, 131103 (2014).

  37. 37.

    , , & Coherent perfect absorption in an all-dielectric metasurface. Appl. Phys. Lett. 108, 121901 (2016).

  38. 38.

    Open Resonators and Open Waveguides (Golem Press, 1969).

  39. 39.

    Light: Laser Dynamics Vol. 2, (North-Holland Phys. Publishing, 1985).

  40. 40.

    , & Steady-state ab initio laser theory: generalizations and analytic results. Phys. Rev. A 82, 063824 (2010).

  41. 41.

    & Light-controlled perfect absorption of light. Opt. Lett. 38 5252–5255 (2013).

  42. 42.

    , & Nonlinearity induced critical coupling. Opt. Lett. 38, 2517–2520 (2013).

  43. 43.

    & Laser cooling of solids. Adv. At. Mol. Opt. Phys. 40, 161–228 (1981).

  44. 44.

    , , , & Interferometric control of absorption in thin plasmonic metamaterials: general two port theory and broadband operation. Opt. Express 23, 9202–9210 (2015).

  45. 45.

    , & Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110 (2014).

  46. 46.

    & Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1, 347–353 (2014).

  47. 47.

    et al. Coherent absorption of light by graphene and other optically conducting surfaces in realistic on-substrate configurations. APL Photonics 2, 016101 (2017).

  48. 48.

    , , & Unified theory for perfect absorption in ultra-thin absorptive films with reflectors. Phys. Rev. B 90, 165128 (2014).

  49. 49.

    , , & Gate-tunable coherent perfect absorption of terahertz radiation in graphene. 2D Mater. 1, 031001 (2014).

  50. 50.

    et al. Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301 (2015).

  51. 51.

    et al. An equivalent realization of coherent perfect absorption under single beam illumination. Sci. Rep. 4, 7369 (2014).

  52. 52.

    Backward lasing yields a perfect absorber. Physics 3, 61 (2010).

  53. 53.

    Laser science: suckers for light. Nature 467, 37–39 (2010).

  54. 54.

    , , & Controllable coherent perfect absorption in a composite film. Opt. Express 20, 1330–1336 (2012).

  55. 55.

    et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012).

  56. 56.

    , , & Analytical model for coherent perfect absorption in one-dimensional photonic structures. Opt. Lett. 40, 5550–5553 (2015).

  57. 57.

    , , & Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating. Phys. Rev. Lett. 109, 257402 (2012).

  58. 58.

    , , , & Coherent perfect absorption mediated anomalous reflection and refraction. Opt. Lett. 37, 4452–4454 (2012).

  59. 59.

    , , & Temperature and gain tuning of plasmonic coherent perfect absorbers. Opt. Express 23, 19837–19845 (2015).

  60. 60.

    & Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

  61. 61.

    et al. Guided-mode resonant coherent light absorbers. Opt. Lett. 39, 486–488 (2014).

  62. 62.

    , & Gain-assisted critical coupling for high-performance coherent perfect absorbers. Opt. Lett. 40, 2309–2312 (2015).

  63. 63.

    et al. Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl. Phys. Lett. 104, 141102 (2014).

  64. 64.

    , , & Selective coherent perfect absorption in metamaterials. Appl. Phys. Lett. 105, 201909 (2014).

  65. 65.

    , , & Coherent control of light–matter interactions in polarization standing waves. Sci. Rep. 6, 31141 (2016).

  66. 66.

    , & Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889–898 (2014).

  67. 67.

    , , & Broadband and energy-concentrating terahertz coherent perfect absorber based on a selfcomplementary metasurface. Opt. Lett. 41, 4472–4475 (2016).

  68. 68.

    , , & Coherent control of optical polarization effects in metamaterials. Sci. Rep. 5, 8977 (2015).

  69. 69.

    , , & Coherent control of birefringence and optical activity. Appl. Phys. Lett. 105, 011906 (2014).

  70. 70.

    et al. Coherent control of Snell's law at metasurfaces. Opt. Express 22, 21051–21060 (2014).

  71. 71.

    , , & Coherent excitation-selective spectroscopy of multipole resonances. Phys. Rev. Appl. 5, 014010 (2016).

  72. 72.

    et al. Coherent selection of invisible high-order electromagnetic excitations. Sci. Rep. 7, 44488 (2017).

  73. 73.

    , , , & Tunable terahertz coherent perfect absorption in a monolayer graphene. Opt. Lett. 39, 6269–6272 (2014).

  74. 74.

    , , , & Coherent control of light interaction with graphene. Opt. Lett. 39, 5345–5347 (2014).

  75. 75.

    et al. Tunable mid-infrared coherent perfect absorption in a graphene meta-surface. Sci. Rep. 5, 13956 (2015).

  76. 76.

    & Recent advances in graphene-assisted nonlinear optical signal processing. J. Nanotechnol. 2016, 7031913 (2016).

  77. 77.

    et al. Geometries for the coherent control of four-wave mixing in graphene multilayers. Sci. Rep. 5, 15399 (2015).

  78. 78.

    , & Graphene plasmonics: a plaftform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011).

  79. 79.

    et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

  80. 80.

    et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

  81. 81.

    , & Graphene plasmonics. Nat. Photonics 6, 749–758 (2012).

  82. 82.

    et al. Coherent perfect absorption and transparency in a nanostructured graphene film. Opt. Express 22, 12524–12532 (2014).

  83. 83.

    , & Noise properties of coherent perfect absorbers and critically coupled resonators. Phys. Rev. A 87, 013843 (2013).

  84. 84.

    & White-light cavity with competing linear and nonlinear dispersions. Phys. Rev. A 77, 031801(R) (2008).

  85. 85.

    & Wideband coherent perfect absorber based on white-light cavity. Opt. Lett. 39, 6624–6627 (2014).

  86. 86.

    et al. General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films. Sci. Rep. 6, 22941 (2016).

  87. 87.

    et al. Octave-spanning coherent perfect absorption in a thin silicon film. Opt. Lett. 42, 151–154 (2016).

  88. 88.

    & Enhanced phase sensitivity of metamaterial absorbers near the point of darkness. J. Appl. Phys. 116, 023102 (2014).

  89. 89.

    , & Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

  90. 90.

    et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

  91. 91.

    , , & Progress toward high-Q perfect absorption: a Fano antilaser. Phys. Rev. A 92, 011802(R) (2015).

  92. 92.

    , & Coherent perfect nanoabsorbers based on negative refraction. Opt. Express 20, 13071 (2012).

  93. 93.

    , & Parity-time symmetric nonlocal meta-surfaces: all-angle negative refraction and volumetric imaging. Phys. Rev. X 6, 041018 (2016).

  94. 94.

    , & Coherent perfect absorption in chiral metamaterials. Opt. Lett. 41, 3359 (2016).

  95. 95.

    & Coherent optical control of polarization with a critical metasurface. Phys. Rev. A 92, 043826 (2015).

  96. 96.

    & Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

  97. 97.

    , & Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002).

  98. 98.

    , , & Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

  99. 99.

    et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

  100. 100.

    et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

  101. 101.

    , , , & PT-symmetry in optics. Phys.-Usp. 57, 1063–1082 (2014).

  102. 102.

    PT-symmetric laser absorber. Phys. Rev. A 82, 031801(R) (2010).

  103. 103.

    , & PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).

  104. 104.

    & PT-symmetric microring laser-absorber. Opt. Lett. 39, 5026–5029 (2014).

  105. 105.

    , , , & Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014).

  106. 106.

    et al. Experimental demonstration of PT-symmetric stripe lasers. Laser Photonics Rev. 10, 588–594 (2016).

  107. 107.

    et al. Lasing and anti-lasing in a single cavity. Nat. Photonics 10, 796–801 (2016).

  108. 108.

    , & Tunable spectral singularities: coherent perfect absorber and laser in an atomic medium. New. J. Phys. 18, 085003 (2016).

  109. 109.

    , & A parity–time symmetric coherent plasmonic absorber-amplifier. J. Appl. Phys. 117, 063106 (2015).

  110. 110.

    et al. Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss. Phys. Rev. A 94, 063841 (2016).

  111. 111.

    , , & Coherent perfect absorption and reflection in slow-light waveguides. Opt. Lett. 38, 4970–4973 (2013).

  112. 112.

    & Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. Opt. Express 21, 27652–27661 (2013).

  113. 113.

    , , , & Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide. Opt. Express 23, 24464–24474 (2015).

  114. 114.

    , & Integrated optical modulators and switches using coherent perfect loss. Opt. Lett. 38, 3001–3004 (2013).

  115. 115.

    & Design of a hybrid silicon-plasmonic co-propagating coupler operating close to coherent perfect absorption. J. Appl. Phys. 119, 163103 (2016).

  116. 116.

    , & Refraction of a surface polariton by an interface. Phys. Rev. B 23, 2576–2585 (1981).

  117. 117.

    , & Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons. Ann. Phys. (Berlin) 528, 537–542 (2016).

  118. 118.

    & Scattering-free plasmonic optics with anisotropic metamaterials. Phys. Rev. Lett. 100, 066402 (2008).

  119. 119.

    et al. Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator. Opt. Lett. 41, 2537–2540 (2016).

  120. 120.

    et al. Super-resonant intracavity coherent absorption. Sci. Rep. 6, 28947 (2016).

  121. 121.

    , , & Perfect coupling of light to surface plasmons by coherent absorption. Phys. Rev. Lett. 108, 186805 (2012).

  122. 122.

    , & Broadband subwavelength focusing of light using a passive sink. Opt. Express 21, 17435–17446 (2013).

  123. 123.

    & Optical spectral singularities and coherent perfect absorption in a two-layer spherical medium. Proc. R. Soc. A 468, 3224–3246 (2012).

  124. 124.

    , & Multi-channel coherent perfect absorbers. Europhys. Lett. 114, 28003 (2016).

  125. 125.

    , , , & Random matrix theory approach to chaotic coherent perfect absorbers. Phys. Rev. Lett. 118, 044101 (2017).

  126. 126.

    & Hidden black: coherent enhancement of absorption in strongly scattering media. Phys. Rev. Lett. 107, 163901 (2011).

  127. 127.

    & Filtering random matrices: the effect of incomplete channel control in multiple scattering. Phys. Rev. Lett. 111, 063901 (2013).

  128. 128.

    , , & Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

  129. 129.

    et al. Quantum computers. Nature 464, 45–53 (2010).

  130. 130.

    Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

  131. 131.

    , , & Quantum optics of lossy beam splitters. Phys. Rev. A 57, 2134–2145 (1998).

  132. 132.

    Interference and the lossless lossy beam splitter. J. Mod. Opt. 47, 1819–1824 (2009).

  133. 133.

    & Coherent perfect absorption of path entangled single photons. Opt. Express 17, 20936–20947 (2014).

  134. 134.

    et al. Anti-coalescence of bosons on a lossy beam splitter. Science 356, 1373–1376 (2017).

  135. 135.

    et al. Coherent absorption of N00N states. Phys. Rev. Lett. 117, 023601 (2016).

  136. 136.

    et al. Coherent perfect absorption in metamaterials with entangled photons. ACS Photonics (2017).

  137. 137.

    , , , & Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

  138. 138.

    Coherent perfect absorption in a homogeneously broadened two-level medium. Phys. Rev. A 83, 055804 (2011).

  139. 139.

    , , & Perfect photon absorption in the nonlinear regime of cavity quantum electrodynamics. Phys. Rev. A 93, 063805 (2016).

  140. 140.

    , , , & All-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial. APL Photonics 1, 090801 (2016).

  141. 141.

    , & All-optical pattern recognition and image processing on a metamaterial beam splitter. ACS Photonics 4, 217–222 (2017).

  142. 142.

    et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

  143. 143.

    et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2012).

  144. 144.

    , & Coherent perfect absorption in one-sided reflectionless media. Sci. Rep. 6, 35356 (2016).

  145. 145.

    et al. Metawaveguide for asymmetric interferometric light-light switching. Phys. Rev. Lett. 117, 193901 (2016).

  146. 146.

    et al. Coherent control of photocurrent in a strongly scattering photoelectrochemical system. ACS Photonics 3, 449–455 (2016).

  147. 147.

    , , & Coherent control of the optical absorption in a plasmonic lattice coupled to a luminescent layer. Phys. Rev. Lett. 116, 103002 (2016).

  148. 148.

    , & Controlling sound with acoustic metamaterials. Nat. Rev. Mat. 1, 16001 (2016).

  149. 149.

    , , , & Acoustic coherent perfect absorbers as sensitive null detectors. Sci. Rep. 7, 43574 (2017).

  150. 150.

    & Biographical Memoirs, Vol. 83 (National Academy of Sciences, 2003).

  151. 151.

    & Gap solitons with null-scattering. Opt. Lett. 39, 2254–2257 (2014).

  152. 152.

    Time-reversed optical parametric oscillation. Phys. Rev. Lett. 107, 033901 (2011).

  153. 153.

    , , , & Three-wave mixing with three incoming waves: signal-idler coherent attenuation and gain enhancement in a parametric amplifier. Phys. Rev. Lett. 111, 073903 (2013).

  154. 154.

    , , & Time-reversed wave mixing in nonlinear optics. Sci. Rep. 3, 3245 (2013).

  155. 155.

    Reciprocity in optics. Rep. Prog. Phys. 67, 717–754 (2004).

Download references

Acknowledgements

D.G.B. and T.S. acknowledge support from the Knut and Alice Wallenberg Foundation. D.G.B. acknowledges support from the Ministry of Education and Science of the Russian Federation (3.1668.2017/4.6). T.S. acknowledges financial support from the Swedish Research Council (Vetenskapsområdet, grant no. 2012–0414). A.A. and A.K. acknowledge support from the Air Force Office of Scientific Research (grant no. FA9550-17-1-0002) and the Welch Foundation (grant no. F-1802). Y.D.C. is grateful to A.D. Stone, H. Cao, L. Ge and A. Cerjan for numerous stimulating and deep discussions, and acknowledges support from the Singapore MOE Academic Research Fund Tier 2 (grant no. MOE2015-T2-2-008) and the Singapore MOE Academic Research Fund Tier 3 (grant no. MOE2011-T3-1-005).

Author information

Affiliations

  1. Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden.

    • Denis G. Baranov
    •  & Timur Shegai
  2. Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.

    • Denis G. Baranov
  3. ITMO University, St. Petersburg 197101, Russia.

    • Denis G. Baranov
  4. Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.

    • Alex Krasnok
    •  & Andrea Alù
  5. Centre for Disruptive Photonic Technologies and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

    • Yidong Chong

Authors

  1. Search for Denis G. Baranov in:

  2. Search for Alex Krasnok in:

  3. Search for Timur Shegai in:

  4. Search for Andrea Alù in:

  5. Search for Yidong Chong in:

Contributions

All authors contributed equally to the preparation of this manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Denis G. Baranov or Yidong Chong.