Review Article | Published:

Valleytronics in 2D materials

Nature Reviews Materials volume 1, Article number: 16055 (2016) | Download Citation

Abstract

Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Valley filter and valley valve in graphene. Nat. Phys. 3, 172–175 (2007). This theoretical work reports that graphene structures can show valley-dependent transport effects.

  2. 2.

    , , & Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. Phys. Rev. Lett. 89, 226805 (2002).

  3. 3.

    et al. Valley susceptibility of an interacting two-dimensional electron system. Phys. Rev. Lett. 97, 186404 (2006).

  4. 4.

    et al. A 90-nm logic technology featuring strained-silicon. IEEE Trans. Electron Devices 51, 1790–1797 (2004).

  5. 5.

    , , & Valley–valley splitting in inversion layers on a high-index surface of silicon. Phys. Rev. Lett. 40, 472 (1978).

  6. 6.

    & Theory of valley splitting in an N-channel (100) inversion layer of Si I. Formulation by extended zone effective mass theory. J. Phys. Soc. Jpn 43, 907–916 (1977).

  7. 7.

    et al. Generation, transport and detection of valley-polarized electrons in diamond. Nat. Mater. 12, 760–764 (2013).

  8. 8.

    , , , & Field-induced polarization of Dirac valleys in bismuth. Nat. Phys. 8, 89–94 (2012).

  9. 9.

    , & Exchange in silicon-based quantum computer architecture. Phys. Rev. Lett. 88, 027903 (2001).

  10. 10.

    et al. Controllable valley splitting in silicon quantum devices. Nat. Phys. 3, 41–45 (2007).

  11. 11.

    et al. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nat. Commun. 4 2069 (2013).

  12. 12.

    et al. Spatially resolving valley quantum interference of a donor in silicon. Nat. Mater. 13, 605–610 (2014).

  13. 13.

    , & Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

  14. 14.

    , & Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). This theoretical work reports that graphene with broken inversion symmetry can show various valley-dependent phenomena.

  15. 15.

    , , , & Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012). This theoretical work reports that monolayer TMDs with broken inversion symmetry can show various valley-dependent effects, including a valley-dependent optical selection rule.

  16. 16.

    , , & Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  17. 17.

    et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 4, 2053 (2013).

  18. 18.

    et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 10, 130–134 (2014).

  19. 19.

    , , , & Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015).

  20. 20.

    , , & Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012). This work and references 21–23 are the first to show that the valley physics of monolayer TMDs is evident by performing helicity-dependent photoluminescence measurements, a consequence of the valley-dependent optical selection rule.

  21. 21.

    et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

  22. 22.

    , , , & Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

  23. 23.

    et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

  24. 24.

    et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

  25. 25.

    et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014). The first experimental report of valley Hall effect in graphene with broken inversion symmetry, using an electronic transport measurement.

  26. 26.

    et al. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys. 11, 1027–1031 (2015).

  27. 27.

    et al. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys. 11, 1032–1036 (2015).

  28. 28.

    , , & The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014). The first experimental report of the valley hall effect in a monolayer TMD using optical injection.

  29. 29.

    , & Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).

  30. 30.

    et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

  31. 31.

    et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

  32. 32.

    , , & Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

  33. 33.

    et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 9, 149–153 (2013).

  34. 34.

    , , & Valley excitons in two-dimensional semiconductors. Natl Sci. Rev. 2, 57–70 (2015).

  35. 35.

    et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

  36. 36.

    et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

  37. 37.

    , & Exciton binding energy of monolayer WS2. Sci. Rep. 5, 9218 (2015).

  38. 38.

    et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

  39. 39.

    et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

  40. 40.

    , , , & Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 14, 2443–2447 (2014).

  41. 41.

    et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

  42. 42.

    , & Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

  43. 43.

    , , & Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866–872 (2012).

  44. 44.

    , & Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013).

  45. 45.

    , , , & Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: experiments and theory. Phys. Rev. B 89, 205436 (2014).

  46. 46.

    , Rö, , & Influence of excited carriers on the optical and electronic properties of MoS2. Nano Lett. 14, 3743–3748 (2014).

  47. 47.

    , , , & Intervalley biexcitons and many-body effects in monolayer MoS2. Phys. Rev. B 92, 125417 (2015).

  48. 48.

    et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).

  49. 49.

    et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 14, 202–206 (2013).

  50. 50.

    et al. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 9, 647–655 (2015).

  51. 51.

    , , , & Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics 9, 466–470 (2015).

  52. 52.

    , , , & Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance raman scattering. Phys. Rev. Lett. 114, 136403 (2015).

  53. 53.

    , & Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

  54. 54.

    et al. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat. Phys. 12, 323–327 (2015).

  55. 55.

    , , , & Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 5, 3876 (2014).

  56. 56.

    , , , & Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  57. 57.

    et al. Electric field dependence of optical absorption near the band gap of quantum-well structures. Phys. Rev. B 32, 1043–1060 (1985).

  58. 58.

    et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6 8579 (2015).

  59. 59.

    et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2015).

  60. 60.

    , & Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 15, 2794–2800 (2015).

  61. 61.

    , , , & Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 99, 102109 (2011).

  62. 62.

    et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6 8315 (2015).

  63. 63.

    et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

  64. 64.

    et al. Exciton–exciton annihilation in MoSe2 monolayers. Phys. Rev. B 89, 125427 (2014).

  65. 65.

    et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014).

  66. 66.

    et al. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation. Phys. Rev. B 90, 155449 (2014).

  67. 67.

    et al. Fast exciton annihilation by capture of electrons or holes by defects via Auger scattering in monolayer metal dichalcogenides. Phys. Rev. B 91, 165411 (2015).

  68. 68.

    et al. Population pulsation resonances of excitons in monolayer MoSe2 with sub-1 μeV linewidths. Phys. Rev. Lett. 114, 137402 (2015).

  69. 69.

    , , & Experimental evidence for dark excitons in monolayer WSe2. Phys. Rev. Lett. 115, 257403 (2015).

  70. 70.

    et al. Optically initialized robust valley-polarized holes in monolayer WSe2. Nat. Commun. 6, 8963 (2015).

  71. 71.

    et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys. 11, 830–834 (2015).

  72. 72.

    , & Exciton spin dynamics in quantum wells. Phys. Rev. B 47, 15776–15788 (1993).

  73. 73.

    et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 90, 075413 (2014).

  74. 74.

    et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump–probe spectroscopy. ACS Nano 7, 11087–11093 (2013).

  75. 75.

    et al. Ultrafast valley relaxation dynamics in monolayer MoS2 probed by nonequilibrium optical techniques. Phys. Rev. B 92, 235425 (2015).

  76. 76.

    et al. Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers. Phys. Rev. B 90, 161302 (2014).

  77. 77.

    , , & Exciton valley dynamics in monolayer WSe2 probed by ultrafast Kerr rotation. Preprint at (2015).

  78. 78.

    , & Time-resolved Kerr rotation spectroscopy of valley dynamics in single-layer MoS2. Preprint at (2014).

  79. 79.

    et al. Carrier and polarization dynamics in monolayer MoS2. Phys. Rev. Lett. 112, 047401 (2014).

  80. 80.

    & Valley depolarization due to intervalley and intravalley electron–hole exchange interactions in monolayer MoS2. Phys. Rev. B 89, 205303 (2014).

  81. 81.

    et al. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 89, 201302 (2014).

  82. 82.

    et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016). Recent experimental report of interlayer valley-dependent effects in a 2D semiconductor heterostructure.

  83. 83.

    et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

  84. 84.

    & Valley Zeeman effect and spin-valley polarized conductance in monolayer MoS2 in a perpendicular magnetic field. Phys. Rev. B 91, 075433 (2015).

  85. 85.

    et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

  86. 86.

    , , , & Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun. 7, 10643 (2015).

  87. 87.

    et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 114, 037401 (2015).

  88. 88.

    et al. Optical investigation of monolayer and bulk tungsten diselenide (WSe2) in high magnetic fields. Nano Lett. 15, 4387–4392 (2015).

  89. 89.

    et al. Magneto-optics in transition metal diselenide monolayers. 2D Mater. 2, 034002 (2015).

  90. 90.

    et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 113, 266804 (2014).

  91. 91.

    , , & Giant and tunable valley degeneracy splitting in MoTe2. Phys. Rev. B 92, 121403 (2015).

  92. 92.

    et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

  93. 93.

    et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

  94. 94.

    & Van der Waals heterostructures. Nature 499, 419–425 (2013).

  95. 95.

    et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

  96. 96.

    et al. Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013).

  97. 97.

    et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014).

  98. 98.

    , & Twist-controlled resonant tunnelling between monolayer and bilayer graphene. Appl. Phys. Lett. 107, 203506 (2015).

  99. 99.

    , & Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013).

  100. 100.

    , , , & Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).

  101. 101.

    & Electronic properties of the MoS2–WS2 heterojunction. Phys. Rev. B 87, 075451 (2013).

  102. 102.

    & Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 88 085318 (2013).

  103. 103.

    et al. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015).

  104. 104.

    & Heterostructures of transition metal dichalcogenides. Phys. Rev. B 92 075439 (2015).

  105. 105.

    & Energy landscape and band-structure tuning in realistic MoS2/MoSe2 heterostructures. Phys. Rev. B 91 195416 (2015).

  106. 106.

    , , , & Electronic structural Moire pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 13, 5485–5490 (2013).

  107. 107.

    et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

  108. 108.

    et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

  109. 109.

    et al. Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 9649–9656 (2014).

  110. 110.

    et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

  111. 111.

    , , , & Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

  112. 112.

    et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).

  113. 113.

    et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

  114. 114.

    , , & Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS Nano 8, 12717–12724 (2014).

  115. 115.

    et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

  116. 116.

    et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185–3190 (2014).

  117. 117.

    , , & Tightly bound trions in transition metal dichalcogenide heterostructures. ACS Nano 9, 6459–6464 (2015).

  118. 118.

    et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 6 7372 (2015).

  119. 119.

    , , & Probing charge transfer excitons in a MoSe2–WS2 van der Waals heterostructure. Nanoscale 7, 17523–17528 (2015).

  120. 120.

    , & High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

  121. 121.

    & Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

  122. 122.

    , , , & Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008).

  123. 123.

    et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012).

  124. 124.

    , , , & Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).

  125. 125.

    et al. Light-induced exciton spin Hall effect in van der Waals heterostructures. Phys. Rev. Lett. 115, 166804 (2015).

  126. 126.

    , , & Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides. New J. Phys. 16, 105011 (2014).

  127. 127.

    et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

  128. 128.

    et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

  129. 129.

    , , , & Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

  130. 130.

    et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

  131. 131.

    , & Strain-induced spatial and spectral isolation of quantum emitters in mono-and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015).

  132. 132.

    et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

  133. 133.

    , , , & Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).

  134. 134.

    , , & Line defects in molybdenum disulfide layers. J. Phys. Chem. C 117, 10842–10848 (2013).

  135. 135.

    , & Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 9, 5189–5197 (2015).

  136. 136.

    et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

  137. 137.

    , , , & Synthesis and defect investigation of two-dimensional molybdenum disulfide atomic layers. Acc. Chem. Res. 48, 31–40 (2015).

  138. 138.

    et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

  139. 139.

    et al. Controlled growth of high quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7, 8963–8971 (2013).

  140. 140.

    et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

  141. 141.

    et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

  142. 142.

    et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657–2657 (2013).

  143. 143.

    , , , & From point to extended defects in two-dimensional MoS2: evolution of atomic structure under electron irradiation. Phys. Rev. B 88, 1–8 (2013).

  144. 144.

    et al. Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nat. Commun. 6, 6736 (2015).

  145. 145.

    et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

  146. 146.

    et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012).

  147. 147.

    et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mat. 24, 5832–5836 (2012).

  148. 148.

    , , , & Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).

  149. 149.

    , & Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013).

  150. 150.

    et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

  151. 151.

    et al. Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014).

  152. 152.

    et al. Electroluminescence in single layer MoS2. Nano Lett. 13, 1416–1421 (2013).

  153. 153.

    et al. Exciton-dominant electroluminescence from a diode of monolayer MoS2. Appl. Phys. Lett. 104, 193508–193508 (2014).

  154. 154.

    et al. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 8, 3042–3048 (2014).

  155. 155.

    et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

  156. 156.

    , & Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014).

  157. 157.

    , , & Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

  158. 158.

    et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1484 (2013).

  159. 159.

    et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

  160. 160.

    et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

  161. 161.

    et al. Monolayer excitonic laser. Nat. Photonics 9, 733–737 (2015).

  162. 162.

    et al. Electrically tunable valley-light emitting diode (vLED) based on CVD-grown monolayer WS2. Nano Lett. 16, 1560–1567 (2016).

  163. 163.

    et al. Monolayer MoS2: trigonal warping, the Γ valley, and spin-orbit coupling effects. Phys. Rev. B 88, 045416 (2013).

  164. 164.

    , , , & Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013).

  165. 165.

    et al. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2, 022001 (2015).

  166. 166.

    , , , & Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals. Phys. Rev. Lett. 113, 156603 (2014).

  167. 167.

    , , , & Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

  168. 168.

    , , & High circular polarization in electroluminescence from MoSe2. Appl. Phys. Lett. 108, 073107 (2016).

  169. 169.

    et al. Dichroic spin-valley photocurrent in monolayer molybdenum disulphide. Nat. Commun. 6, 7636 (2015).

  170. 170.

    et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015).

  171. 171.

    et al. Nonlinear optical selection rule based on valley-exciton locking in monolayer WS2. Light Sci. Appl. 4, e366 (2015).

  172. 172.

    & All-optical injection of charge, spin, and valley currents in monolayer transition-metal dichalcogenides. Phys. Rev. B 91, 085404 (2015).

  173. 173.

    et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  174. 174.

    , & Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

  175. 175.

    et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2012).

  176. 176.

    et al. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 88, 245403 (2013).

Download references

Acknowledgements

This work is mainly supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0008145 and SC0012509). G.C. and P.R. acknowledge support from NSF-EFRI-1433496 and AFOSR FA9550-14-1-0277. H.Y. and W.Y. were supported by the Croucher Foundation (Croucher Innovation Award), and the Research Grants Council (RGC) and University Grants Committee (UGC) of Hong Kong (HKU17305914P, HKU9/CRF/13G, AoE/P-04/08). X.X. acknowledges a Cottrell Scholar Award, support from the State of Washington funded Clean Energy Institute, and support from Boeing Distinguished Professorship.

Author information

Affiliations

  1. Department of Physics, University of Washington, Seattle, Washington 98195, USA.

    • John R. Schaibley
    • , Pasqual Rivera
    • , Kyle L. Seyler
    •  & Xiaodong Xu
  2. Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong, China.

    • Hongyi Yu
    •  & Wang Yao
  3. Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.

    • Genevieve Clark
    • , Jason S. Ross
    •  & Xiaodong Xu

Authors

  1. Search for John R. Schaibley in:

  2. Search for Hongyi Yu in:

  3. Search for Genevieve Clark in:

  4. Search for Pasqual Rivera in:

  5. Search for Jason S. Ross in:

  6. Search for Kyle L. Seyler in:

  7. Search for Wang Yao in:

  8. Search for Xiaodong Xu in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to John R. Schaibley or Xiaodong Xu.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/natrevmats.2016.55