Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Global quantitative analysis of phosphorylation underlying phencyclidine signaling and sensorimotor gating in the prefrontal cortex

Abstract

Prepulse inhibition (PPI) is an example of sensorimotor gating and deficits in PPI have been demonstrated in schizophrenia patients. Phencyclidine (PCP) suppression of PPI in animals has been studied to elucidate the pathological elements of schizophrenia. However, the molecular mechanisms underlying PCP treatment or PPI in the brain are still poorly understood. In this study, quantitative phosphoproteomic analysis was performed on the prefrontal cortex from rats that were subjected to PPI after being systemically injected with PCP or saline. PCP downregulated phosphorylation events were significantly enriched in proteins associated with long-term potentiation (LTP). Importantly, this data set identifies functionally novel phosphorylation sites on known LTP-associated signaling molecules. In addition, mutagenesis of a significantly altered phosphorylation site on xCT (SLC7A11), the light chain of system xc-, the cystine/glutamate antiporter, suggests that PCP also regulates the activity of this protein. Finally, new insights were also derived on PPI signaling independent of PCP treatment. This is the first quantitative phosphorylation proteomic analysis providing new molecular insights into sensorimotor gating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Regier DA, Narrow WE, Rae DS, Manderscheid RW, Locke BZ, Goodwin FK . The de facto US mental and addictive disorders service system. Epidemiologic catchment area prospective 1-year prevalence rates of disorders and services. Arch Gen Psychiatry 1993; 50: 85–94.

    Article  CAS  PubMed  Google Scholar 

  2. Perry W, Braff DL . Information-processing deficits and thought disorder in schizophrenia. Am J Psychiatry 1994; 151: 363–367.

    Article  CAS  PubMed  Google Scholar 

  3. Powell SB, Zhou X, Geyer MA . Prepulse inhibition and genetic mouse models of schizophrenia. Behav Brain Res 2009; 204: 282–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dingledine R, Borges K, Bowie D, Traynelis SF . The glutamate receptor ion channels. Pharmacol Rev 1999; 51: 7–61.

    CAS  PubMed  Google Scholar 

  5. Cull-Candy SG, Leszkiewicz DN . Role of distinct NMDA receptor subtypes at central synapses. Science 2004; 2004: 16.

    Google Scholar 

  6. Malenka RC, Bear MF . LTP and LTD: an embarrassment of riches. Neuron 2004; 44: 5–21.

    Article  CAS  PubMed  Google Scholar 

  7. Lau CG, Zukin RS . NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 2007; 8: 413–426.

    Article  CAS  PubMed  Google Scholar 

  8. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214.

    Article  CAS  PubMed  Google Scholar 

  9. Lahti AC, Koffel B, LaPorte D, Tamminga CA . Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 1995; 13: 9–19.

    CAS  PubMed  Google Scholar 

  10. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  11. Swerdlow NR, Geyer MA, Braff DL . Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 2001; 156: 194–215.

    Article  CAS  Google Scholar 

  12. Braff DL . Prepulse inhibition of the startle reflex: a window on the brain in schizophrenia. Curr Top Behav Neurosci 2010; 4: 349–371.

    Article  PubMed  Google Scholar 

  13. Mohn AR, Gainetdinov RR, Caron MG, Koller BH . Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999; 98: 427–436.

    Article  CAS  PubMed  Google Scholar 

  14. Moghaddam B, Jackson ME . Glutamatergic animal models of schizophrenia. Ann N Y Acad Sci 2003; 1003: 131–137.

    Article  CAS  PubMed  Google Scholar 

  15. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    Article  CAS  PubMed  Google Scholar 

  16. Kantrowitz JT, Javitt DC . N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 2010; 83: 108–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 1996; 16: 19–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA . Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 2000; 157: 1141–1149.

    Article  CAS  PubMed  Google Scholar 

  19. Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH . NMDA receptors and schizophrenia. Curr Opin Pharmacol 2007; 7: 48–55.

    Article  CAS  PubMed  Google Scholar 

  20. Geddes AE, Huang XF, Newell KA . Reciprocal signalling between NR2 subunits of the NMDA receptor and neuregulin1 and their role in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 2011; 35: 896–904.

    Article  CAS  Google Scholar 

  21. Weickert CS, Fung SJ, Catts VS, Schofield PR, Allen KM, Moore LT et al. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol Psychiatry 2013; 18: 1185–1192.

    Article  CAS  PubMed  Google Scholar 

  22. Pilowsky LS, Bressan RA, Stone JM, Erlandsson K, Mulligan RS, Krystal JH et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 2006; 11: 118–119.

    Article  CAS  PubMed  Google Scholar 

  23. Olney JW, Farber NB . Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  24. Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL et al. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 2007; 318: 1645–1647.

    Article  CAS  PubMed  Google Scholar 

  25. Gao XM, Hashimoto T, Tamminga CA . Phencyclidine (PCP) and dizocilpine (MK801) exert time-dependent effects on the expression of immediate early genes in rat brain. Synapse 1998; 29: 14–28.

    Article  CAS  PubMed  Google Scholar 

  26. Enomoto T, Tse MT, Floresco SB . Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia. Biol Psychiatry 2011; 69: 432–441.

    Article  CAS  PubMed  Google Scholar 

  27. Martin P, Carlsson ML, Hjorth S . Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats. Neuroreport 1998; 9: 2985–2988.

    Article  CAS  PubMed  Google Scholar 

  28. Savage S, Mattsson A, Olson L . Cholinergic denervation attenuates phencyclidine-induced c-fos responses in rat cortical neurons. Neuroscience 2012; 2: 38–45.

    Article  CAS  Google Scholar 

  29. Lodge D, Johnson KM . Noncompetitive excitatory amino acid receptor antagonists. Trends Pharmacol Sci 1990; 11: 81–86.

    Article  CAS  PubMed  Google Scholar 

  30. Moghaddam B, Adams BW . Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 1998; 281: 1349–1352.

    Article  CAS  PubMed  Google Scholar 

  31. Sanderson JL, Dell'Acqua ML . AKAP signaling complexes in regulation of excitatory synaptic plasticity. Neuroscientist 2011; 17: 321–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scannevin RH, Huganir RL . Postsynaptic organization and regulation of excitatory synapses. Nat Rev Neurosci 2000; 1: 133–141.

    Article  CAS  PubMed  Google Scholar 

  33. Lei G, Xia Y, Johnson KM . The role of Akt-GSK-3beta signaling and synaptic strength in phencyclidine-induced neurodegeneration. Neuropsychopharmacology 2008; 33: 1343–1353.

    Article  CAS  PubMed  Google Scholar 

  34. Xia Y, Wang CZ, Liu J, Anastasio NC, Johnson KM . Lithium protection of phencyclidine-induced neurotoxicity in developing brain: the role of phosphatidylinositol-3 kinase/Akt and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathways. J Pharmacol Exp Ther 2008; 326: 838–848.

    Article  CAS  PubMed  Google Scholar 

  35. Mouri A, Noda Y, Noda A, Nakamura T, Tokura T, Yura Y et al. Involvement of a dysfunctional dopamine-D1/N-methyl-d-aspartate-NR1 and Ca2+/calmodulin-dependent protein kinase II pathway in the impairment of latent learning in a model of schizophrenia induced by phencyclidine. Mol Pharmacol 2007; 71: 1598–1609.

    Article  CAS  PubMed  Google Scholar 

  36. Molteni R, Pasini M, Moraschi S, Gennarelli M, Drago F, Racagni G et al. Reduced activation of intracellular signaling pathways in rat prefrontal cortex after chronic phencyclidine administration. Pharmacol Res 2008; 57: 296–302.

    Article  CAS  PubMed  Google Scholar 

  37. Li K, Zhou T, Liao L, Yang Z, Wong C, Henn F et al. betaCaMKII in lateral habenula mediates core symptoms of depression. Science 2013; 341: 1016–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lewis DA, Gonzalez-Burgos G . Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology 2008; 33: 141–165.

    Article  PubMed  Google Scholar 

  39. McIntosh AM, Owens DC, Moorhead WJ, Whalley HC, Stanfield AC, Hall J et al. Longitudinal volume reductions in people at high genetic risk of schizophrenia as they develop psychosis. Biol Psychiatry 2011; 69: 953–958.

    Article  PubMed  Google Scholar 

  40. Moghaddam B, Krystal JH . Capturing the angel in "angel dust": twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr Bull 2012; 38: 942–949.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Barr AM, Powell SB, Markou A, Geyer MA . Iloperidone reduces sensorimotor gating deficits in pharmacological models, but not a developmental model, of disrupted prepulse inhibition in rats. Neuropharmacology 2006; 51: 457–465.

    Article  CAS  PubMed  Google Scholar 

  42. Mansbach RS, Brooks EW, Sanner MA, Zorn SH . Selective dopamine D4 receptor antagonists reverse apomorphine-induced blockade of prepulse inhibition. Psychopharmacology (Berl) 1998; 135: 194–200.

    Article  CAS  Google Scholar 

  43. McClatchy DB, Liao L, Park SK, Venable JD, Yates JR . Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. Genome Res 2007; 17: 1378–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McClatchy DB, Dong MQ, Wu CC, Venable JD, Yates JR 3rd . 15N metabolic labeling of mammalian tissue with slow protein turnover. J Proteome Res 2007; 6: 2005–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen EI, McClatchy D, Park SK, Yates JR 3rd . Comparisons of mass spectrometry compatible surfactants for global analysis of the mammalian brain proteome. Anal Chem 2008; 80: 8694–8701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fonslow BR, Niessen SM, Singh M, Wong CC, Xu T, Carvalho PC et al. Single-step inline hydroxyapatite enrichment facilitates identification and quantitation of phosphopeptides from mass-limited proteomes with MudPIT. J Proteome Res 2012; 11: 2697–2709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Washburn MP, Wolters D, Yates JR 3rd . Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19: 242–247.

    Article  CAS  PubMed  Google Scholar 

  48. Venable JD, Wohlschlegel J, McClatchy DB, Park SK, Yates JR 3rd . Relative quantification of stable isotope labeled peptides using a linear ion trap-Orbitrap hybrid mass spectrometer. Anal Chem 2007; 79: 3056–3064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McDonald WH, Tabb DL, Sadygov RG, MacCoss MJ, Venable J, Graumann J et al. MS1, MS2, and SQT- Three Unified, Compact, andEasily Parsed File Formats for the Storage of Shotgun Proteomic Spectra and Identifications. Rapid Commun Mass Spectrom 2004; 18: 2162–2168.

    Article  CAS  PubMed  Google Scholar 

  50. Eng JK, McCormack AL, Yates JR . III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrometry 1994; 5: 976–989.

    Article  CAS  Google Scholar 

  51. Sadygov RG, Eng J, Durr E, Saraf A, McDonald H, MacCoss MJ et al. Code developments to improve the efficiency of automated MS/MS spectra interpretation. J Proteome Res 2002; 1: 211–215.

    Article  CAS  PubMed  Google Scholar 

  52. Elias JE, Gygi SP . Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 2007; 4: 207–214.

    Article  CAS  PubMed  Google Scholar 

  53. MacCoss MJ, Wu CC III . JRY. A correlation algorithm for the automated analysis of quantitative 'shotgun' proteomics data. Anal Chem 2003; 75: 6912–6921.

    Article  CAS  PubMed  Google Scholar 

  54. Park SK, Venable JD, Xu T, Yates JR 3rd . A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 2008; 5: 319–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ting L, Cowley MJ, Hoon SL, Guilhaus M, Raftery MJ, Cavicchioli R . Normalization and statistical analysis of quantitative proteomics data generated by metabolic labeling. Mol Cell Proteomics 2009; 8: 2227–2242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP . A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 2006; 24: 1285–1292.

    Article  CAS  PubMed  Google Scholar 

  57. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ et al. A network-based analysis of systemic inflammation in humans. Nature 2005; 437: 1032–1037.

    Article  CAS  PubMed  Google Scholar 

  58. Park SK, Venable JD, Xu T, Yates JR 3rd . A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 2008; 5: 319–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Park SK, Yates JR 3rd . Census for proteome quantification. Curr Protoc Bioinform/editoral board, Andreas D Baxevanis [et al] 2010; Chapter 13: Unit 13.

    Google Scholar 

  60. Pearce LR, Komander D, Alessi DR . The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 2010; 11: 9–22.

    Article  CAS  PubMed  Google Scholar 

  61. Pyle RA, Schivell AE, Hidaka H, Bajjalieh SM . Phosphorylation of synaptic vesicle protein 2 modulates binding to synaptotagmin. J Biol Chem 2000; 275: 17195–17200.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang H, Webb DJ, Asmussen H, Niu S, Horwitz AF . A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci 2005; 25: 3379–3388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Markevich NI, Hoek JB, Kholodenko BN . Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 2004; 164: 353–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kapuy O, Barik D, Sananes MR, Tyson JJ, Novak B . Bistability by multiple phosphorylation of regulatory proteins. Prog Biophys Mol Biol 2009; 100: 47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Benitez-King G, Ramirez-Rodriguez G, Ortiz L, Meza I . The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia. Curr Drug Targets CNS Neurol Disord 2004; 3: 515–533.

    Article  CAS  PubMed  Google Scholar 

  66. Hayashi K, Pan Y, Shu H, Ohshima T, Kansy JW, White CL 3rd et al. Phosphorylation of the tubulin-binding protein, stathmin, by Cdk5 and MAP kinases in the brain. J Neurochem 2006; 99: 237–250.

    Article  CAS  PubMed  Google Scholar 

  67. Blitzer RD, Connor JH, Brown GP, Wong T, Shenolikar S, Iyengar R et al. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 1998; 280: 1940–1942.

    Article  CAS  PubMed  Google Scholar 

  68. Genoux D, Haditsch U, Knobloch M, Michalon A, Storm D, Mansuy IM . Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 2002; 418: 970–975.

    Article  CAS  PubMed  Google Scholar 

  69. Deguchi M, Hata Y, Takeuchi M, Ide N, Hirao K, Yao I et al. BEGAIN (brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein. J Biol Chem 1998; 273: 26269–26272.

    Article  CAS  PubMed  Google Scholar 

  70. Yao I, Iida J, Nishimura W, Hata Y . Synaptic and nuclear localization of brain-enriched guanylate kinase-associated protein. J Neurosci 2002; 22: 5354–5364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW et al. The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 2013; 18: 522–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lewerenz J, Maher P . Basal levels of eIF2alpha phosphorylation determine cellular antioxidant status by regulating ATF4 and xCT expression. J Biol Chem 2009; 284: 1106–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S . The protein kinase complement of the human genome. Science 2002; 298: 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  74. Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 2006; 5: 1158–1170.

    Article  CAS  PubMed  Google Scholar 

  75. Yang L, MacLellan WR, Han Z, Weiss JN, Qu Z . Multisite phosphorylation and network dynamics of cyclin-dependent kinase signaling in the eukaryotic cell cycle. Biophys J 2004; 86: 3432–3443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Palmowski P, Rogowska-Wrzesinska A, Williamson J, Beck HC, Mikkelsen JD, Hansen HH et al. Acute phencyclidine treatment induces extensive and distinct protein phosphorylation in rat frontal cortex. J Proteome Res 2014; 13: 1578–1592.

    Article  CAS  PubMed  Google Scholar 

  77. Wu R, Dephoure N, Haas W, Huttlin EL, Zhai B, Sowa ME et al. Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes. Mol Cell Proteomics 2011; 10: M111 009654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 2010; 143: 1174–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kargieman L, Santana N, Mengod G, Celada P, Artigas F . Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine. Proc Natl Acad Sci USA 2007; 104: 14843–14848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liao L, Sando RC, Farnum JB, Vanderklish PW, Maximov A, Yates JR . 15 N-labeled brain enables quantification of proteome and phosphoproteome in cultured primary neurons. J Proteome Res 2012; 11: 1341–1353.

    Article  CAS  PubMed  Google Scholar 

  81. Powell SB, Geyer MA . Overview of animal models of schizophrenia. Curr Protoc Neurosci 2007; Chapter 9: Unit 9–24.

    Google Scholar 

  82. Melnick SM, Rodriguez JS, Bernardi RE, Ettenberg A . A simple procedure for assessing ataxia in rats: effects of phencyclidine. Pharmacol Biochem Behav 2002; 72: 125–130.

    Article  CAS  PubMed  Google Scholar 

  83. Krebs-Thomson K, Lehmann-Masten V, Naiem S, Paulus MP, Geyer MA . Modulation of phencyclidine-induced changes in locomotor activity and patterns in rats by serotonin. Eur J Pharmacol 1998; 343: 135–143.

    Article  CAS  PubMed  Google Scholar 

  84. Ogren SO, Goldstein M . Phencyclidine- and dizocilpine-induced hyperlocomotion are differentially mediated. Neuropsychopharmacology 1994; 11: 167–177.

    Article  CAS  PubMed  Google Scholar 

  85. Belmont LD, Mitchison TJ . Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 1996; 84: 623–631.

    Article  CAS  PubMed  Google Scholar 

  86. Manna T, Thrower DA, Honnappa S, Steinmetz MO, Wilson L . Regulation of microtubule dynamic instability in vitro by differentially phosphorylated stathmin. J Biol Chem 2009; 284: 15640–15649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Solis-Chagoyan H, Calixto E, Figueroa A, Montano LM, Berlanga C, Rodriguez-Verdugo MS et al. Microtubule organization and L-type voltage-activated calcium current in olfactory neuronal cells obtained from patients with schizophrenia and bipolar disorder. Schizophr Res 2013; 143: 384–389.

    Article  CAS  PubMed  Google Scholar 

  88. Brown AS, Borgmann-Winter K, Hahn CG, Role L, Talmage D, Gur R et al. Increased stability of microtubules in cultured olfactory neuroepithelial cells from individuals with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 2013; S0278-5846: 00236–4.

    Google Scholar 

  89. Schubart UK, Yu J, Amat JA, Wang Z, Hoffmann MK, Edelmann W . Normal development of mice lacking metablastin (P19), a phosphoprotein implicated in cell cycle regulation. J Biol Chem 1996; 271: 14062–14066.

    Article  CAS  PubMed  Google Scholar 

  90. Shumyatsky GP, Malleret G, Shin RM, Takizawa S, Tully K, Tsvetkov E et al. Stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 2005; 123: 697–709.

    Article  CAS  PubMed  Google Scholar 

  91. Martel G, Nishi A, Shumyatsky GP . Stathmin reveals dissociable roles of the basolateral amygdala in parental and social behaviors. Proc Natl Acad Sci USA 2008; 105: 14620–14625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Martel G, Hevi C, Wong A, Zushida K, Uchida S, Shumyatsky GP . Murine GRPR and stathmin control in opposite directions both cued fear extinction and neural activities of the amygdala and prefrontal cortex. PLoS One 2012; 7: e30942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 2012; 40: D261–D270.

    Article  CAS  PubMed  Google Scholar 

  94. Peters A, Sethares C, Luebke JI . Synapses are lost during aging in the primate prefrontal cortex. Neuroscience 2008; 152: 970–981.

    Article  CAS  PubMed  Google Scholar 

  95. Glausier JR, Lewis DA . Dendritic spine pathology in schizophrenia. Neuroscience 2013; 251: 90–107.

    Article  CAS  PubMed  Google Scholar 

  96. Elsworth JD, Morrow BA, Hajszan T, Leranth C, Roth RH . Phencyclidine-induced loss of asymmetric spine synapses in rodent prefrontal cortex is reversed by acute and chronic treatment with olanzapine. Neuropsychopharmacology 2011; 36: 2054–2061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Flores C, Wen X, Labelle-Dumais C, Kolb B . Chronic phencyclidine treatment increases dendritic spine density in prefrontal cortex and nucleus accumbens neurons. Synapse 2007; 61: 978–984.

    Article  CAS  PubMed  Google Scholar 

  98. Malenka RC, Madison DV, Nicoll RA . Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 1986; 321: 175–177.

    Article  CAS  PubMed  Google Scholar 

  99. Kleschevnikov AM, Routtenberg A . PKC activation rescues LTP from NMDA receptor blockade. Hippocampus 2001; 11: 168–175.

    Article  CAS  PubMed  Google Scholar 

  100. Orr JW, Newton AC . Requirement for negative charge on "activation loop" of protein kinase C. J Biol Chem 1994; 269: 27715–27718.

    CAS  PubMed  Google Scholar 

  101. Brunet A, Pages G, Pouyssegur J . Growth factor-stimulated MAP kinase induces rapid retrophosphorylation and inhibition of MAP kinase kinase (MEK1). FEBS Lett 1994; 346: 299–303.

    Article  CAS  PubMed  Google Scholar 

  102. Saito Y, Gomez N, Campbell DG, Ashworth A, Marshall CJ, Cohen P . The threonine residues in MAP kinase kinase 1 phosphorylated by MAP kinase in vitro are also phosphorylated in nerve growth factor-stimulated rat phaeochromocytoma (PC12) cells. FEBS Lett 1994; 341: 119–124.

    Article  CAS  PubMed  Google Scholar 

  103. Kelleher RJ 3rd, Govindarajan A, Jung HY, Kang H, Tonegawa S . Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 2004; 116: 467–479.

    Article  CAS  PubMed  Google Scholar 

  104. Fernandez de, Sevilla D, Nunez A, Borde M, Malinow R, Buno W . Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons. J Neurosci 2008; 28: 1469–1478.

    Article  CAS  Google Scholar 

  105. Harnett MT, Bernier BE, Ahn KC, Morikawa H . Burst-timing-dependent plasticity of NMDA receptor-mediated transmission in midbrain dopamine neurons. Neuron 2009; 62: 826–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. DeSouza N, Reiken S, Ondrias K, Yang YM, Matkovich S, Marks AR . Protein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex. J Biol Chem 2002; 277: 39397–39400.

    Article  CAS  PubMed  Google Scholar 

  107. Wagner LE 2nd, Li WH, Joseph SK, Yule DI . Functional consequences of phosphomimetic mutations at key cAMP-dependent protein kinase phosphorylation sites in the type 1 inositol 1,4,5-trisphosphate receptor. J Biol Chem 2004; 279: 46242–46252.

    Article  CAS  PubMed  Google Scholar 

  108. Stringer JL, Greenfield LJ, Hackett JT, Guyenet PG . Blockade of long-term potentiation by phencyclidine and sigma opiates in the hippocampus in vivo and in vitro. Brain Res 1983; 280: 127–138.

    Article  CAS  PubMed  Google Scholar 

  109. Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW . The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 2002; 22: 9134–9141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. De Bundel D, Schallier A, Loyens E, Fernando R, Miyashita H, Van Liefferinge J et al. Loss of system x(c)- does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J Neurosci 2011; 31: 5792–5803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baker DA, Madayag A, Kristiansen LV, Meador-Woodruff JH, Haroutunian V, Raju I . Contribution of cystine-glutamate antiporters to the psychotomimetic effects of phencyclidine. Neuropsychopharmacology 2008; 33: 1760–1772.

    Article  CAS  PubMed  Google Scholar 

  112. Arstikaitis P, Gauthier-Campbell C, Carolina Gutierrez Herrera R, Huang K, Levinson JN, Murphy TH et al. Paralemmin-1, a modulator of filopodia induction is required for spine maturation. Mol Biol Cell 2008; 19: 2026–2038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rudolf R, Bittins CM, Gerdes HH . The role of myosin V in exocytosis and synaptic plasticity. J Neurochem 2011; 116: 177–191.

    Article  CAS  PubMed  Google Scholar 

  114. Hernandez JM, Floyd DH, Weilbaecher KN, Green PL, Boris-Lawrie K . Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene 2008; 27: 4757–4767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Guedea AL, Schrick C, Guzman YF, Leaderbrand K, Jovasevic V, Corcoran KA et al. ERK-associated changes of AP-1 proteins during fear extinction. Mol Cell Neurosci 2011; 47: 137–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schwarzschild MA, Cole RL, Hyman SE . Glutamate, but not dopamine, stimulates stress-activated protein kinase and AP-1-mediated transcription in striatal neurons. J Neurosci 1997; 17: 3455–3466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Takahashi K, Nagai T, Kamei H, Maeda K, Matsuya T, Arai S et al. Neural circuits containing pallidotegmental GABAergic neurons are involved in the prepulse inhibition of the startle reflex in mice. Biol Psychiatry 2007; 62: 148–157.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding has been provided by National Institutes of Health grants P41 GM103533, R01 MH067880 and R01 DA002925.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Yates III.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClatchy, D., Savas, J., Martínez-Bartolomé, S. et al. Global quantitative analysis of phosphorylation underlying phencyclidine signaling and sensorimotor gating in the prefrontal cortex. Mol Psychiatry 21, 205–215 (2016). https://doi.org/10.1038/mp.2015.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.41

Search

Quick links