Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Rapid antidepressant effects: moving right along

Abstract

Available treatments for depression have significant limitations, including low response rates and substantial lag times for response. Reports of rapid antidepressant effects of a number of compounds, including the glutamate N-methyl-D-aspartate receptor antagonist ketamine, have spurred renewed translational neuroscience efforts aimed at elucidating the molecular and cellular mechanisms of action that result in rapid therapeutic response. This perspective provides an overview of recent advances utilizing compounds with rapid-acting antidepressant effects, discusses potential mechanism of action and provides a framework for future research directions aimed at developing safe, efficacious antidepressants that achieve satisfactory remission not only by working rapidly but also by providing a sustained response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kessler RC, Akiskal HS, Ames M, Birnbaum H, Greenberg P, Hirschfeld RM et al. Prevalence and effects of mood disorders on work performance in a nationally representative sample of U.S. workers. Am J Psychiatry 2006; 163: 1561–1568.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baune BT, Adrian I, Jacobi F . Medical disorders affect health outcome and general functioning depending on comorbid major depression in the general population. J Psychosom Res 2007; 62: 109–118.

    Article  PubMed  Google Scholar 

  3. Judd LL, Akiskal HS, Schettler PJ, Endicott J, Maser J, Solomon DA et al. The long-term natural history of the weekly symptomatic status of bipolar I disorder. Arch Gen Psychiatry 2002; 59: 530–537.

    Article  PubMed  Google Scholar 

  4. Thase ME, Haight BR, Richard N, Rockett CB, Mitton M, Modell JG et al. Remission rates following antidepressant therapy with bupropion or selective serotonin reuptake inhibitors: a meta-analysis of original data from 7 randomized controlled trials. J Clin Psychiatry 2005; 66: 974–981.

    Article  CAS  PubMed  Google Scholar 

  5. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 2006; 163: 28–40.

    Article  PubMed  Google Scholar 

  6. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 2006; 163: 1905–1917.

    Article  PubMed  Google Scholar 

  7. Gelenberg AJ, Chesen CL . How fast are antidepressants? J Clin Psychiatry 2000; 61: 712–721.

    Article  CAS  PubMed  Google Scholar 

  8. Insel TR, Scolnick EM . Cure therapeutics and strategic prevention: raising the bar for mental health research. Mol Psychiatry 2006; 11: 11–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Machado-Vieira R, Salvadore G, Luckenbaugh DA, Manji HK, Zarate Jr. CA . Rapid onset of antidepressant action: a new paradigm in the research and treatment of major depressive disorder. J Clin Psychiatry 2008; 69: 946–958.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jick H, Kaye JA, Jick SS . Antidepressants and the risk of suicidal behaviors. JAMA 2004; 292: 338–343.

    Article  CAS  PubMed  Google Scholar 

  11. Post RM, Uhde TW, Rubinow DR, Huggins T . Differential time course of antidepressant effects after sleep deprivation, ECT, and carbamazepine: clinical and theoretical implications. Psychiatry Res 1987; 22: 11–19.

    Article  CAS  PubMed  Google Scholar 

  12. Benedetti F, Barbini B, Colombo C, Smeraldi E . Chronotherapeutics in a psychiatric ward. Sleep Med Rev 2007; 11: 509–522.

    Article  PubMed  Google Scholar 

  13. Benedetti F, Barbini B, Fulgosi MC, Colombo C, Dallaspezia S, Pontiggia A et al. Combined total sleep deprivation and light therapy in the treatment of drug-resistant bipolar depression: acute response and long-term remission rates. J Clin Psychiatry 2005; 66: 1535–1540.

    Article  CAS  PubMed  Google Scholar 

  14. Giedke H, Schwarzler F . Therapeutic use of sleep deprivation in depression. Sleep Med Rev 2002; 6: 361–377.

    Article  PubMed  Google Scholar 

  15. Wirz-Justice A, Van den Hoofdakker RH . Sleep deprivation in depression: what do we know, where do we go? Biol Psychiatry 1999; 46: 445–453.

    Article  CAS  PubMed  Google Scholar 

  16. Bunney BG, Bunney WE . Rapid-acting antidepressant strategies: mechanisms of action. Int J Neuropsychopharmacol 2012; 15: 695–713.

    Article  CAS  PubMed  Google Scholar 

  17. Salvadore G, Quiroz JA, Machado-Vieira R, Henter ID, Manji HK, Zarate Jr. CA . The neurobiology of the switch process in bipolar disorder: a review. J Clin Psychiatry 2010; 71: 1488–1501.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hyman SE, Nestler EJ . Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am J Psychiatry 1996; 153: 151–162.

    Article  CAS  PubMed  Google Scholar 

  19. Schloesser RJ, Martinowich K, Manji HK . Mood-stabilizing drugs: mechanisms of action. Trends Neurosci 2012; 35: 36–46.

    Article  CAS  PubMed  Google Scholar 

  20. Krishnan V, Nestler EJ . The molecular neurobiology of depression. Nature 2008; 455: 894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carlson PJ, Singh JB, Zarate Jr. CA, Drevets WC, Manji HK . Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. NeuroRx 2006; 3: 22–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pittenger C, Duman RS . Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008; 33: 88–109.

    Article  CAS  PubMed  Google Scholar 

  23. Machado-Vieira R, Ibrahim L, Henter ID, Zarate Jr. CA . Novel glutamatergic agents for major depressive disorder and bipolar disorder. Pharmacol Biochem Behav 2012; 100: 678–687.

    Article  CAS  PubMed  Google Scholar 

  24. Trullas R, Skolnick P . Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 1990; 185: 1–10.

    Article  CAS  PubMed  Google Scholar 

  25. Sanacora G, Zarate CA, Krystal JH, Manji HK . Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 2008; 7: 426–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, A Gray N et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003; 53: 707–742.

    Article  CAS  PubMed  Google Scholar 

  27. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47: 351–354.

    Article  CAS  PubMed  Google Scholar 

  28. Zarate Jr. CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006; 63: 856–864.

    Article  CAS  PubMed  Google Scholar 

  29. Valentine GW, Mason GF, Gomez R, Fasula M, Watzl J, Pittman B et al. The antidepressant effect of ketamine is not associated with changes in occipital amino acid neurotransmitter content as measured by [(1)H]-MRS. Psychiatry Res 2011; 191: 122–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zarate Jr. CA, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A et al. Replication of ketamine's antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 2012; 71: 939–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 2010; 67: 793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ibrahim L, Diazgranados N, Franco-Chaves J, Brutsche N, Henter ID, Kronstein P et al. Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology 2012; 37: 1526–1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Silberman EK, Reus VI, Jimerson DC, Lynott AM, Post RM . Heterogeneity of amphetamine response in depressed patients. Am J Psychiatry 1981; 138: 1302–1307.

    Article  CAS  PubMed  Google Scholar 

  34. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B . Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 70–75.

    Article  CAS  PubMed  Google Scholar 

  35. Reus GZ, Stringari RB, Kirsch TR, Fries GR, Kapczinski F, Roesler R et al. Neurochemical and behavioural effects of acute and chronic memantine administration in rats: further support for NMDA as a new pharmacological target for the treatment of depression? Brain Res Bull 2010; 81: 585–589.

    Article  CAS  PubMed  Google Scholar 

  36. Rogoz Z, Skuza G, Maj J, Danysz W . Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacology 2002; 42: 1024–1030.

    Article  CAS  PubMed  Google Scholar 

  37. Skuza G, Rogoz Z . Sigma1 receptor antagonists attenuate antidepressant-like effect induced by co-administration of 1,3 di-o-tolylguanidine (DTG) and memantine in the forced swimming test in rats. Pol J Pharmacol 2003; 55: 1149–1152.

    CAS  PubMed  Google Scholar 

  38. Ferguson JM, Shingleton RN . An open-label, flexible-dose study of memantine in major depressive disorder. Clin Neuropharmacol 2007; 30: 136–144.

    Article  CAS  PubMed  Google Scholar 

  39. Zarate Jr. CA, Singh JB, Quiroz JA, De Jesus G, Denicoff KK, Luckenbaugh DA et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry 2006; 163: 153–155.

    Article  PubMed  Google Scholar 

  40. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329: 959–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maeng S, Zarate Jr. CA, Du J, Schloesser RJ, McCammon J, Chen G et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008; 63: 349–352.

    Article  CAS  PubMed  Google Scholar 

  42. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW . An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 2008; 28: 631–637.

    Article  CAS  PubMed  Google Scholar 

  43. Ibrahim L, Diazgranados N, Jolkovsky L, Brutsche N, Luckenbaugh DA, Herring WJ et al. A randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J Clin Psychopharmacol 2012; 32: 551–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zarate Jr. CA, Mathews D, Ibrahim L, Chaves JF, Marquardt C, Ukoh I et al. A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression. Biol Psychiatry 2013 (e-pub ahead of print).

  45. Furey ML, Drevets WC . Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 2006; 63: 1121–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu HF, Zhou WH, Xie XH, Cao JL, Gu J, Yang GD . [Muscarinic receptors modulate the mRNA expression of NMDA receptors in brainstem and the release of glutamate in periaqueductal grey during morphine withdrawal in rats]. Sheng Li Xue Bao 2004; 56: 95–100.

    CAS  PubMed  Google Scholar 

  47. Rami A, Ausmeir F, Winckler J, Krieglstein J . Differential effects of scopolamine on neuronal survival in ischemia and glutamate neurotoxicity: relationships to the excessive vulnerability of the dorsoseptal hippocampus. J Chem Neuroanat 1997; 13: 201–208.

    Article  CAS  PubMed  Google Scholar 

  48. Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G et al. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 2002; 7 (Suppl 1): S71–80.

    Article  CAS  PubMed  Google Scholar 

  49. Clements JA, Nimmo WS . Pharmacokinetics and analgesic effect of ketamine in man. Br J Anaesth 1981; 53: 27–30.

    Article  CAS  PubMed  Google Scholar 

  50. Moghaddam B, Adams B, Verma A, Daly D . Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 1997; 17: 2921–2927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Razoux F, Garcia R, Lena I . Ketamine, at a dose that disrupts motor behavior and latent inhibition, enhances prefrontal cortex synaptic efficacy and glutamate release in the nucleus accumbens. Neuropsychopharmacology 2007; 32: 719–727.

    Article  CAS  PubMed  Google Scholar 

  52. Lorrain DS, Schaffhauser H, Campbell UC, Baccei CS, Correa LD, Rowe B et al. Group II mGlu receptor activation suppresses norepinephrine release in the ventral hippocampus and locomotor responses to acute ketamine challenge. Neuropsychopharmacology 2003; 28: 1622–1632.

    Article  CAS  PubMed  Google Scholar 

  53. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011; 475: 91–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beurel E, Song L, Jope RS . Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Mol Psychiatry 2011; 16: 1068–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Du J, Gray NA, Falke CA, Chen W, Yuan P, Szabo ST et al. Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. J Neurosci 2004; 24: 6578–6589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Du J, Quiroz JA, Gray NA, Szabo ST, Zarate Jr. CA, Manji HK . Regulation of cellular plasticity and resilience by mood stabilizers: the role of AMPA receptor trafficking. Dialogues Clin Neurosci 2004; 6: 143–155.

    PubMed  PubMed Central  Google Scholar 

  57. Homayoun H, Moghaddam B . NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 2007; 27: 11496–11500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 2011; 69: 754–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoeffer CA, Klann E . mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 2010; 33: 67–75.

    Article  CAS  PubMed  Google Scholar 

  60. Willner P . Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 2005; 52: 90–110.

    Article  CAS  PubMed  Google Scholar 

  61. Radley JJ, Morrison JH . Repeated stress and structural plasticity in the brain. Ageing Res Rev 2005; 4: 271–287.

    Article  PubMed  Google Scholar 

  62. Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 2006; 16: 313–320.

    Article  PubMed  Google Scholar 

  63. Radley JJ, Rocher AB, Rodriguez A, Ehlenberger DB, Dammann M, McEwen BS et al. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J Comp Neurol 2008; 507: 1141–1150.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Goldwater DS, Pavlides C, Hunter RG, Bloss EB, Hof PR, McEwen BS et al. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 2009; 164: 798–808.

    Article  CAS  PubMed  Google Scholar 

  65. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK . Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry 2012; 71: 996–1005.

    Article  CAS  PubMed  Google Scholar 

  66. Lu B . BDNF and activity-dependent synaptic modulation. Learn Mem 2003; 10: 86–98.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Martinowich K, Manji H, Lu B . New insights into BDNF function in depression and anxiety. Nat Neurosci 2007; 10: 1089–1093.

    Article  CAS  PubMed  Google Scholar 

  68. Waterhouse EG, Xu B . New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 2009; 42: 81–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Duman RS, Monteggia LM . A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–1127.

    Article  CAS  PubMed  Google Scholar 

  70. Castren E, Voikar V, Rantamaki T . Role of neurotrophic factors in depression. Curr Opin Pharmacol 2007; 7: 18–21.

    Article  CAS  PubMed  Google Scholar 

  71. Dwivedi Y . Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatric Dis Treat 2009; 5: 433–449.

    Article  CAS  Google Scholar 

  72. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT . Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50: 260–265.

    Article  CAS  PubMed  Google Scholar 

  73. Sen S, Duman R, Sanacora G . Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 2008; 64: 527–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM . Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 2008; 63: 642–649.

    Article  CAS  PubMed  Google Scholar 

  75. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 2004; 101: 10827–10832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006; 311: 864–868.

    Article  CAS  PubMed  Google Scholar 

  77. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS . Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM . Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997; 56: 131–137.

    Article  CAS  PubMed  Google Scholar 

  79. Hoshaw BA, Malberg JE, Lucki I . Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res 2005; 1037: 204–208.

    Article  CAS  PubMed  Google Scholar 

  80. Kavalali ET, Monteggia LM . Synaptic mechanisms underlying rapid antidepressant action of ketamine. Am J Psychiatry 2012; 169: 1150–1156.

    Article  PubMed  Google Scholar 

  81. Monteggia LM, Gideons E, Kavalali ET . The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry 2013 (e-pub ahead of print).

  82. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    Article  CAS  PubMed  Google Scholar 

  83. Chen ZY, Patel PD, Sant G, Meng CX, Teng KK, Hempstead BL et al. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci 2004; 24: 4401–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chiaruttini C, Vicario A, Li Z, Baj G, Braiuca P, Wu Y et al. Dendritic trafficking of BDNF mRNA is mediated by translin and blocked by the G196A (Val66Met) mutation. Proc Natl Acad Sci USA 2009; 106: 16481–16486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Takei N, Inamura N, Kawamura M, Namba H, Hara K, Yonezawa K et al. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci 2004; 24: 9760–9769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 2006; 314: 140–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Laje G, Lally N, Mathews D, Brutsche N, Chemerinski A, Akula N et al. Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol Psychiatry 2012; 72: e27–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tononi G, Cirelli C . Sleep function and synaptic homeostasis. Sleep Med Rev 2006; 10: 49–62.

    Article  PubMed  Google Scholar 

  89. Esser SK, Hill SL, Tononi G . Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep 2007; 30: 1617–1630.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 2007; 30: 1643–1657.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G . Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep 2007; 30: 1631–1642.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Martinowich K, Schloesser RJ, Jimenez DV, Weinberger DR, Lu B . Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior. Mol Brain 2011; 4: 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hairston IS, Peyron C, Denning DP, Ruby NF, Flores J, Sapolsky RM et al. Sleep deprivation effects on growth factor expression in neonatal rats: a potential role for BDNF in the mediation of delta power. J Neurophysiol 2004; 91: 1586–1595.

    Article  CAS  PubMed  Google Scholar 

  94. Conti B, Maier R, Barr AM, Morale MC, Lu X, Sanna PP et al. Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry 2007; 12: 167–189.

    Article  CAS  PubMed  Google Scholar 

  95. Cirelli C, Tononi G . Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci 2000; 20: 9187–9194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C . A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci 2008; 28: 4088–4095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Martinowich K, Schloesser RJ, Hardy NF, Jimenez DV, Lu B, Weinberger DR . Effects of Genetic Reduction of Activity-Dependent BDNF on Cortical Slow-Wave Activity, 50th Annual ACNP Meeting vol. 36. Neuropsychopharmacology: Waikoloa, Hawaii pp S198–S323 2011.

    Google Scholar 

  98. Bachmann V, Klaus F, Bodenmann S, Schafer N, Brugger P, Huber S et al. Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb Cortex 2012; 22: 962–970.

    Article  PubMed  Google Scholar 

  99. Duncan WC, Sarasso S, Ferrarelli F, Selter J, Riedner BA, Hejazi NS et al. Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol 2012; 16: 301–311.

    Article  CAS  PubMed  Google Scholar 

  100. Sackeim HA, Luber B, Katzman GP, Moeller JR, Prudic J, Devanand DP et al. The effects of electroconvulsive therapy on quantitative electroencephalograms. Relationship to clinical outcome. Arch Gen Psychiatry 1996; 53: 814–824.

    Article  CAS  PubMed  Google Scholar 

  101. Heikman P, Salmelin R, Makela JP, Hari R, Katila H, Kuoppasalmi K . Relation between frontal 3-7 Hz MEG activity and the efficacy of ECT in major depression. J ECT 2001; 17: 136–140.

    Article  CAS  PubMed  Google Scholar 

  102. Jourdi H, Hsu YT, Zhou M, Qin Q, Bi X, Baudry M . Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 2009; 29: 8688–8697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Duman RS, Aghajanian GK . Synaptic dysfunction in depression: potential therapeutic targets. Science 2012; 338: 68–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H K Manji.

Ethics declarations

Competing interests

KM and DVJ are currently full-time employees of the Lieber Institute for Brain Development, CAZ is currently a full-time employee of the intramural program of the National Institute of Mental Health and HKM is currently a full-time employee of Janssen Research and Development, LLC. We declare that, except for income received from their primary employers, no financial support or compensation has been received from any individual or corporate entity for research or professional service and there are no real or perceived financial holdings that could be perceived as constituting a potential conflict of interest. CAZ and HKM are listed as co-inventors on a patent application for the use of ketamine in major depression. CAZ and HKM have assigned their rights on the patent to the US government but may share a percentage of any royalties that may be received by the government. HKM, however, will waive any such royalties that may be received in relation to this patent application.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinowich, K., Jimenez, D., Zarate, C. et al. Rapid antidepressant effects: moving right along. Mol Psychiatry 18, 856–863 (2013). https://doi.org/10.1038/mp.2013.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.55

Keywords

This article is cited by

Search

Quick links