Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute lymphoblastic leukemia

Regulation of PI3K signaling in T-cell acute lymphoblastic leukemia: a novel PTEN/Ikaros/miR-26b mechanism reveals a critical targetable role for PIK3CD

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy, and T-ALL patients are prone to early disease relapse and suffer from poor outcomes. The PTEN, PI3K/AKT and Notch pathways are frequently altered in T-ALL. PTEN is a tumor suppressor that inactivates the PI3K pathway. We profiled miRNAs in Pten-deficient mouse T-ALL and identified miR-26b as a potentially dysregulated gene. We validated decreased expression levels of miR-26b in mouse and human T-ALL cells. In addition, expression of exogenous miR-26b reduced proliferation and promoted apoptosis of T-ALL cells in vitro, and hindered progression of T-ALL in vivo. Furthermore, miR-26b inhibited the PI3K/AKT pathway by directly targeting PIK3CD, the gene encoding PI3Kδ, in human T-ALL cell lines. ShRNA for PIK3CD and CAL-101, a PIK3CD inhibitor, reduced the growth and increased apoptosis of T-ALL cells. Finally, we showed that PTEN induced miR-26b expression by regulating the differential expression of Ikaros isoforms that are transcriptional regulators of miR-26b. These results suggest that miR-26b functions as a tumor suppressor in the development of T-ALL. Further characterization of targets and regulators of miR-26b may be promising for the development of novel therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  2. Marks DI, Paietta EM, Moorman AV, Richards SM, Buck G, DeWald G et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood 2009; 114: 5136–5145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pui CH, Robison LL, Look AT . Acute lymphoblastic leukaemia. Lancet 2008; 371: 1030–1043.

    Article  CAS  PubMed  Google Scholar 

  4. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  PubMed  Google Scholar 

  5. Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 2008; 118: 3762–3774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jenkinson S, Kirkwood AA, Goulden N, Vora A, Linch DC, Gale RE . Impact of PTEN abnormalities on outcome in pediatric patients with T-cell acute lymphoblastic leukemia treated on the MRC UKALL2003 trial. Leukemia 2016; 30: 39–47.

    Article  CAS  PubMed  Google Scholar 

  7. Kastner P, Chan S . Role of Ikaros in T-cell acute lymphoblastic leukemia. World J Biol Chem 2011; 2: 108–114.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Orozco CA, Acevedo A, Cortina L, Cuellar GE, Duarte M, Martin L et al. The combined expression patterns of Ikaros isoforms characterize different hematological tumor subtypes. PLoS One 2013; 8: e82411.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Geimer Le Lay AS, Oravecz A, Mastio J, Jung C, Marchal P, Ebel C et al. The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells. Sci Signal 2014; 7: ra28.

    Article  PubMed  Google Scholar 

  10. Winandy S, Wu P, Georgopoulos K . A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 1995; 83: 289–299.

    Article  CAS  PubMed  Google Scholar 

  11. Miao MH, Ji XQ, Zhang H, Xu J, Zhu H, Shao XJ . miR-590 promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia by inhibiting RB1. Oncotarget 2016; 7: 39527–39534.

    PubMed  PubMed Central  Google Scholar 

  12. Fan SJ, Li HB, Cui G, Kong XL, Sun LL, Zhao YQ et al. miRNA-149* promotes cell proliferation and suppresses apoptosis by mediating JunB in T-cell acute lymphoblastic leukemia. Leuk Res 2016; 41: 62–70.

    Article  CAS  PubMed  Google Scholar 

  13. Yin JJ, Liang B, Zhan XR . MicroRNA-204 inhibits cell proliferation in T-cell acute lymphoblastic leukemia by down-regulating SOX4. Int J Clin Exp Pathol 2015; 8: 9189–9195.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Oliveira LH, Schiavinato JL, Fraguas MS, Lucena-Araujo AR, Haddad R, Araujo AG et al. Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia. Cancer Sci 2015; 106: 1264–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xi Y, Li J, Zhang P, Bai W, Gao N, Bai W et al. Upregulation of miRNA-17 and miRNA-19 is associated with unfavorable prognosis in patients with T-cell lymphoblastic lymphoma. Exp Mol Pathol 2015; 99: 297–302.

    Article  CAS  PubMed  Google Scholar 

  16. Verduci L, Azzalin G, Gioiosa S, Carissimi C, Laudadio I, Fulci V et al. microRNA-181a enhances cell proliferation in acute lymphoblastic leukemia by targeting EGR1. Leuk Res 2015; 39: 479–485.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu H, Miao MH, Ji XQ, Xue J, Shao XJ . miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia. Biochem Biophys Res Commun 2015; 459: 340–345.

    Article  CAS  PubMed  Google Scholar 

  18. Sanghvi VR, Mavrakis KJ, Van der Meulen J, Boice M, Wolfe AL, Carty M et al. Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia. Sci Signal 2014; 7: ra111.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ortega M, Bhatnagar H, Lin AP, Wang L, Aster JC, Sill H et al. A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies. Leukemia 2015; 29: 968–976.

    Article  CAS  PubMed  Google Scholar 

  20. Mets E, Van der Meulen J, Van Peer G, Boice M, Mestdagh P, Van de Walle I et al. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia. Leukemia 2015; 29: 798–806.

    Article  CAS  PubMed  Google Scholar 

  21. Malik D, Kaul D, Chauhan N, Marwaha RK . miR-2909-mediated regulation of KLF4: a novel molecular mechanism for differentiating between B-cell and T-cell pediatric acute lymphoblastic leukemias. Mol Cancer 2014; 13: 175.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mets E, Van Peer G, Van der Meulen J, Boice M, Taghon T, Goossens S et al. MicroRNA-128-3p is a novel oncomiR targeting PHF6 in T-cell acute lymphoblastic leukemia. Haematologica 2014; 99: 1326–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xia H, Yamada S, Aoyama M, Sato F, Masaki A, Ge Y et al. Prognostic impact of microRNA-145 down-regulation in adult T-cell leukemia/lymphoma. Hum Pathol 2014; 45: 1192–1198.

    Article  CAS  PubMed  Google Scholar 

  24. Gimenes-Teixeira HL, Lucena-Araujo AR, Dos Santos GA, Zanette DL, Scheucher PS, Oliveira LC et al. Increased expression of miR-221 is associated with shorter overall survival in T-cell acute lymphoid leukemia. Exp Hematol Oncol 2013; 2: 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ye H, Liu X, Lv M, Wu Y, Kuang S, Gong J et al. MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia. Nucleic Acids Res 2012; 40: 5201–5214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet 2011; 43: 673–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiaretti S, Messina M, Tavolaro S, Zardo G, Elia L, Vitale A et al. Gene expression profiling identifies a subset of adult T-cell acute lymphoblastic leukemia with myeloid-like gene features and over-expression of miR-223. Haematologica 2010; 95: 1114–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH et al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009; 23: 313–322.

    Article  CAS  PubMed  Google Scholar 

  29. Spizzo R, Nicoloso MS, Croce CM, Calin GA . SnapShot: microRNAs in cancer. Cell 2009; 137: 586–586 e581.

    Article  CAS  PubMed  Google Scholar 

  30. Medyouf H, Gao X, Armstrong F, Gusscott S, Liu Q, Gedman AL et al. Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss. Blood 2010; 115: 1175–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Z, Kim K, Li X, Moreno M, Sharp T, Goodheart MJ et al. MicroRNA-26b represses colon cancer cell proliferation by inhibiting lymphoid enhancer factor 1 expression. Mol Cancer Ther 2014; 13: 1942–1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li D, Wei Y, Wang D, Gao H, Liu K . MicroRNA-26b suppresses the metastasis of non-small cell lung cancer by targeting MIEN1 via NF-kappaB/MMP-9/VEGF pathways. Biochem Biophys Res Commun 2016; 472: 465–470.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng WD, Zhou FL, Lin N . MicroRNA-26b inhibits osteosarcoma cell migration and invasion by down-regulating PFKFB3 expression. Genet Mol Res 2015; 14: 16872–16879.

    Article  CAS  PubMed  Google Scholar 

  34. Mamonkin M, Rouce RH, Tashiro H, Brenner MK . A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood 2015; 126: 983–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 2004; 101: 9740–9744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu CG, Calin GA, Volinia S, Croce CM . MicroRNA expression profiling using microarrays. Nat Protocols 2008; 3: 563–578.

    Article  CAS  PubMed  Google Scholar 

  37. Burger JA, Hoellenriegel J . Phosphoinositide 3'-kinase delta: turning off BCR signaling in chronic lymphocytic leukemia. Oncotarget 2011; 2: 737–738.

    PubMed  PubMed Central  Google Scholar 

  38. Nair KS, Cheson B . The role of idelalisib in the treatment of relapsed and refractory chronic lymphocytic leukemia. Ther Adv Hematol 2016; 7: 69–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alkhatib A, Werner M, Hug E, Herzog S, Eschbach C, Faraidun H et al. FoxO1 induces Ikaros splicing to promote immunoglobulin gene recombination. J Exp Med 2012; 209: 395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schjerven H, McLaughlin J, Arenzana TL, Frietze S, Cheng D, Wadsworth SE et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol 2013; 14: 1073–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009; 114: 647–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao WL . Targeted therapy in T-cell malignancies: dysregulation of the cellular signaling pathways. Leukemia 2010; 24: 13–21.

    Article  CAS  PubMed  Google Scholar 

  43. Subramaniam PS, Whye DW, Efimenko E, Chen J, Tosello V, De Keersmaecker K et al. Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell 2012; 21: 459–472.

    Article  CAS  PubMed  Google Scholar 

  44. Levine AJ, Chan CS, Dudgeon C, Puzio-Kuter A, Hainaut P . The evolution of tumors in mice and humans with germline p53 mutations. Cold Spring Harb Symp Quant Biol 2015; 80: 139–145.

    Article  PubMed  Google Scholar 

  45. Sun L, Liu A, Georgopoulos K . Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 1996; 15: 5358–5369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trinh LA, Ferrini R, Cobb BS, Weinmann AS, Hahm K, Ernst P et al. Down-regulation of TDT transcription in CD4(+)CD8(+) thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev 2001; 15: 1817–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bottardi S, Mavoungou L, Bourgoin V, Mashtalir N, Affar el B, Milot E . Direct protein interactions are responsible for Ikaros-GATA and Ikaros-Cdk9 cooperativeness in hematopoietic cells. Mol Cell Biol 2013; 33: 3064–3076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Galy A, Christopherson I, Ferlazzo G, Liu G, Spits H, Georgopoulos K . Distinct signals control the hematopoiesis of lymphoid-related dendritic cells. Blood 2000; 95: 128–137.

    CAS  PubMed  Google Scholar 

  49. Tucker SN, Jessup HK, Fujii H, Wilson CB . Enforced expression of the Ikaros isoform IK5 decreases the numbers of extrathymic intraepithelial lymphocytes and natural killer 1.1+ T cells. Blood 2002; 99: 513–519.

    Article  CAS  PubMed  Google Scholar 

  50. Ronni T, Payne KJ, Ho S, Bradley MN, Dorsam G, Dovat S . Human Ikaros function in activated T cells is regulated by coordinated expression of its largest isoforms. J Biol Chem 2007; 282: 2538–2547.

    Article  CAS  PubMed  Google Scholar 

  51. Weng AP, Ferrando AA, Lee W, JPt Morris, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  52. Hales EC, Taub JW, Matherly LH . New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of gamma-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cel Signal 2014; 26: 149–161.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NIH/NCI R01 CA164346, R01 CA200703, CPRIT RP140402 Developmental Research Awards in Leukemia SPORE CA100632, Ladies Leukemia League, and American Cancer Society IRG, Center for Genetic and Genomics, Center for Inflammation and Cancer, Physician Scientist Award and IRG of UT MD Anderson Cancer Center to MJY. This work was also supported by the Sister Institution Network Funds of UT MD Anderson Cancer Center to MJY, and matching fund from Tianjin Medical University Cancer Institute and Hospital to YZ and matching fund from Shanghai Cancer Center to XYZ. The postnatal normal thymocytes were generously provided by Dr Andrew P Weng at Terry Fox Laboratory. The CCRF-CEM-FFluc cell line was kindly provided by Dr Malcolm K Brenner at Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, USA. miRNA expression profiling was performed at the core for Sequencing and ncRNA Program at the University of Texas MD Anderson Cancer Center. RNAseq was performed at the Sequencing and Microarray Facility at the University of Texas MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Zhang or M J You.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, T., Yang, Y., Chen, J. et al. Regulation of PI3K signaling in T-cell acute lymphoblastic leukemia: a novel PTEN/Ikaros/miR-26b mechanism reveals a critical targetable role for PIK3CD. Leukemia 31, 2355–2364 (2017). https://doi.org/10.1038/leu.2017.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.80

This article is cited by

Search

Quick links