Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute lymphoblastic leukemia

Expression of the fetal hematopoiesis regulator FEV indicates leukemias of prenatal origin

Abstract

The origin of cancers is associated with etiology as well as therapeutics. Several studies reveal that malignancies in children can originate in utero. However, a diagnostic approach to distinguish between cancers initiated pre- or postnatally is absent. Here we identified a transcriptional factor FEV (fifth Ewing variant) that was expressed in fetal hematopoietic cells and became silent after birth. We characterized that FEV was essential for the self-renewal of hematopoietic stem cells (HSCs). We next found that FEV was expressed in most infant leukemia samples, but seldom in adult samples, in accord with the known prenatal origins of the former. We further determined the majority of pediatric acute lymphoid leukemia (ALL) and acute myeloid leukemia (AML) were FEV positive. Moreover, FEV knockdown markedly impaired the leukemia-propagating ability of leukemic stem cells. We therefore identified FEV is unique to fetal HSCs and stably expressed in leukemic cells of prenatal origin. It may also provide a tractable therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cohnheim J . Congenitales, quergestreiftes Muskelsarkom der Nieren. Virchows Arch 1875; 65: 64–69.

    Article  Google Scholar 

  2. Durante F . Nesso fisio-patologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni. Arch Memo Observ Chir Prat 1874; 11: 217–226.

    Google Scholar 

  3. Virchow R . Die multiloculäre, ulcerirende Echinokokkengeschwulst der Leber. Verhandlungen der Physicalisch-Medicinischen Gesellschaft 1855; 6: 84–95.

    Google Scholar 

  4. Ford AM, Ridge SA, Cabrera ME, Mahmoud H, Steel CM, Chan LC et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993; 363: 358–360.

    Article  CAS  Google Scholar 

  5. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999; 354: 1499–1503.

    Article  CAS  Google Scholar 

  6. Yagi T, Hibi S, Tabata Y, Kuriyama K, Teramura T, Hashida T et al. Detection of clonotypic IGH and TCR rearrangements in the neonatal blood spots of infants and children with B-cell precursor acute lymphoblastic leukemia. Blood 2000; 96: 264–268.

    CAS  PubMed  Google Scholar 

  7. Wiemels JL, Xiao Z, Buffler PA, Maia AT, Ma X, Dicks BM et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood 2002; 99: 3801–3805.

    Article  CAS  Google Scholar 

  8. De Preter K, Vandesompele J, Heimann P, Yigit N, Beckman S, Schramm A et al. Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes. Genome Biol 2006; 7: R84.

    Article  Google Scholar 

  9. Gailani MR, Bale SJ, Leffell DJ, DiGiovanna JJ, Peck GL, Poliak S et al. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell 1992; 69: 111–117.

    Article  CAS  Google Scholar 

  10. Chen D, Livne-bar I, Vanderluit JL, Slack RS, Agochiya M, Bremner R . Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 2004; 5: 539–551.

    Article  CAS  Google Scholar 

  11. Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 2008; 319: 336–339.

    Article  CAS  Google Scholar 

  12. Marshall GM, Carter DR, Cheung BB, Liu T, Mateos MK, Meyerowitz JG et al. The prenatal origins of cancer. Nat Rev Cancer 2014; 14: 277–289.

    Article  CAS  Google Scholar 

  13. Greaves MF, Wiemels J . Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 2003; 3: 639–649.

    Article  CAS  Google Scholar 

  14. Peter M, Couturier J, Pacquement H, Michon J, Thomas G, Magdelenat H et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997; 14: 1159–1164.

    Article  CAS  Google Scholar 

  15. Liu F, Patient R . Genome-wide analysis of the zebrafish ETS family identifies three genes required for hemangioblast differentiation or angiogenesis. Circ Res 2008; 103: 1147–1154.

    Article  CAS  Google Scholar 

  16. Wang L, Liu T, Xu L, Gao Y, Wei Y, Duan C et al. Fev regulates hematopoietic stem cell development via ERK signaling. Blood 2013; 122: 367–375.

    Article  CAS  Google Scholar 

  17. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  Google Scholar 

  18. Weisser M, Haferlach T, Schoch C, Hiddemann W, Schnittger S . The use of housekeeping genes for real-time PCR-based quantification of fusion gene transcripts in acute myeloid leukemia. Leukemia 2004; 18: 1551–1553.

    Article  CAS  Google Scholar 

  19. Fan D, Zhou X, Li Z, Li ZQ, Duan C, Liu T et al. Stem cell programs are retained in human leukemic lymphoblasts. Oncogene 2015; 34: 2083–2093.

    Article  CAS  Google Scholar 

  20. Gupta R, Hong D, Iborra F, Sarno S, Enver T . NOV (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science 2007; 316: 590–593.

    Article  CAS  Google Scholar 

  21. Duan CW, Shi J, Chen J, Wang B, Yu YH, Qin X et al. Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell 2014; 25: 778–793.

    Article  CAS  Google Scholar 

  22. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 2011; 19: 138–152.

    Article  CAS  Google Scholar 

  23. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE . Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 2011; 333: 218–221.

    Article  CAS  Google Scholar 

  24. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    Article  CAS  Google Scholar 

  25. Pina C, Enver T . Differential contributions of haematopoietic stem cells to foetal and adult haematopoiesis: insights from functional analysis of transcriptional regulators. Oncogene 2007; 26: 6750–6765.

    Article  CAS  Google Scholar 

  26. Zon LI . Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 2008; 453: 306–313.

    Article  CAS  Google Scholar 

  27. Greaves MF, Maia AT, Wiemels JL, Ford AM . Leukemia in twins: lessons in natural history. Blood 2003; 102: 2321–2333.

    Article  CAS  Google Scholar 

  28. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011; 469: 356–361.

    Article  CAS  Google Scholar 

  29. Kong Y, Yoshida S, Saito Y, Doi T, Nagatoshi Y, Fukata M et al. CD34+CD38+CD19+ as well as CD34+CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL. Leukemia 2008; 22: 1207–1213.

    Article  CAS  Google Scholar 

  30. le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 2008; 14: 47–58.

    Article  CAS  Google Scholar 

  31. Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER, Greaves M . Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 1998; 95: 4584–4588.

    Article  CAS  Google Scholar 

  32. Hjalgrim LL, Madsen HO, Melbye M, Jorgensen P, Christiansen M, Andersen MT et al. Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia. Br J Cancer 2002; 87: 994–999.

    Article  CAS  Google Scholar 

  33. Taub JW, Konrad MA, Ge Y, Naber JM, Scott JS, Matherly LH et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood 2002; 99: 2992–2996.

    Article  CAS  Google Scholar 

  34. Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997; 94: 13950–13954.

    Article  CAS  Google Scholar 

  35. Ke F CY, Tang JY, Hong DL . Tracking down the origin of stem cell programs in cancer cells. Ann Hematol Oncol 2015; 2: 1054–1055.

    Google Scholar 

  36. Fasching K, Panzer S, Haas OA, Borkhardt A, Marschalek R, Griesinger F et al. Presence of N regions in the clonotypic DJ rearrangements of the immunoglobulin heavy-chain genes indicates an exquisitely short latency in t(4;11)-positive infant acute lymphoblastic leukemia. Blood 2001; 98: 2272–2274.

    Article  CAS  Google Scholar 

  37. Maia AT, Koechling J, Corbett R, Metzler M, Wiemels JL, Greaves M . Protracted postnatal natural histories in childhood leukemia. Genes Chromosomes Cancer 2004; 39: 335–340.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Greaves for critical comments on the paper. We thank B Zhang for the provision of fev:GFP zebrafish. B Zhao and C Duan are also acknowledged for their technical assistance in flow-sorting and mouse injection, respectively. This work was supported by grants from the National Basic Research Program of China (Grant No. 2012CB967001 to D-LH and 2010CB945300 and 2011CB943900 to FL) and the National Natural Science Foundation of China (Grant Nos. 81120108006, 90919055 and 91442106 to D-LH and 31425016 to FL).

Author contributions

T-HL designed and performed the experiments and analyzed the results; Y-JT and T-HL collected and analyzed the clinical data; LW and FL performed zebrafish experiments; YH and Q-JY collected human fetal liver and BM cells; X-LG, YZ, LC, HZ, XL and L-HZ collected human CB cells; J-YT, B-SL, J-QM and L-GL collected patient samples and related clinical information; AF detected FEV expression and analyzed data; TE, FL and G-QC discussed the data and contributed to the writing of the manuscript; D-LH supervised the project, designed the experiments and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F Liu, G-Q Chen or D-L Hong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, TH., Tang, YJ., Huang, Y. et al. Expression of the fetal hematopoiesis regulator FEV indicates leukemias of prenatal origin. Leukemia 31, 1079–1086 (2017). https://doi.org/10.1038/leu.2016.313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.313

Search

Quick links