Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Synergistic induction of apoptosis in high-risk DLBCL by BCL2 inhibition with ABT-199 combined with pharmacologic loss of MCL1

Abstract

Better treatments are needed for patients with diffuse large B-cell lymphoma (DLBCL) at high risk of failing standard therapy. Avoiding apoptosis is a hallmark of cancer, and in DLBCL the redundantly functioning antiapoptotic proteins BCL2 and MCL1 are frequently expressed. Here we explore drugs that cause loss of MCL1, particularly the potent new cyclin-dependent kinase inhibitor dinaciclib, which knocks down MCL1 by inhibiting CDK9. Dinaciclib induces apoptosis in DLBCL cells but is completely overcome by increased activity of BCL2. We find that clinical samples have frequent co-expression of MCL1 and BCL2, suggesting that therapeutic strategies targeting only one will lead to treatment failures owing to activity of the other. The BH3 mimetic ABT-199 potently and specifically targets BCL2. Single-agent ABT-199 had modest antitumor activity against most DLBCL lines and resulted in compensatory upregulation of MCL1 expression. ABT-199 synergized strongly, however, when combined with dinaciclib and with other drugs affecting MCL1, including standard DLBCL chemotherapy drugs. We show potent antitumor activities of these combinations in xenografts and in a genetically accurate murine model of MYC-BCL2 double-hit lymphoma. In sum, we reveal a rational treatment paradigm to strip DLBCL of its protection from apoptosis and improve outcomes for high-risk patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Coiffier B, Lepage E, Brière J, Herbrecht R, Tilly H, Bouabdallah R et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-b-cell lymphoma. N Engl J Med 2002; 346: 235–242.

    Article  CAS  PubMed  Google Scholar 

  2. Habermann TM, Weller EA, Morrison VA, Gascoyne RD, Cassileth PA, Cohn JB et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large b-cell lymphoma. J Clin Oncol 2006; 24: 3121–3127.

    Article  CAS  PubMed  Google Scholar 

  3. Sehn LH, Donaldson J, Chhanabhai M, Fitzgerald C, Gill K, Klasa R et al. Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol 2005; 23: 5027–5033.

    Article  CAS  PubMed  Google Scholar 

  4. Friedberg JW . Relapsed/refractory diffuse large B-cell lymphoma. Hematology Am Soc Hematol Educ Program 2011; 2011: 498–505.

    Article  PubMed  Google Scholar 

  5. Vaidya R, Witzig TE . Prognostic factors for diffuse large B-cell lymphoma in the R(X)CHOP era. Ann Oncol 2014; 25: 2124–2133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. George A, Tam CS, Seymour JF . High-risk diffuse large B-cell lymphoma: can we do better than rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone? Leuk Lymphoma 2013; 54: 2575–2576.

    Article  CAS  PubMed  Google Scholar 

  7. Ziepert M, Hasenclever D, Kuhnt E, Glass B, Schmitz N, Pfreundschuh M et al. Standard international prognostic index remains a valid predictor of outcome for patients with aggressive cd20+ b-cell lymphoma in the rituximab era. J Clin Oncol 2010; 28: 2373–2380.

    Article  CAS  PubMed  Google Scholar 

  8. Green TM, Young KH, Visco C, Xu-Monette ZY, Orazi A, Go RS et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large b-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 2012; 30: 3460–3467.

    Article  CAS  PubMed  Google Scholar 

  9. Johnson NA, Slack GW, Savage KJ, Connors JM, Ben-Neriah S, Rogic S et al. Concurrent expression of MYC and BCL2 in diffuse large b-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 2012; 30: 3452–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu S, Xu-Monette ZY, Tzankov A, Green T, Wu L, Balasubramanyam A et al. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program. Blood 2013; 121: 4021–4031, quiz 4250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Monti S, Chapuy B, Takeyama K, Rodig SJ, Hao Y, Yeda KT et al. Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large b cell lymphoma. Cancer Cell 2012; 22: 359–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  13. Davids MS, Letai A . Targeting the B-cell lymphoma/leukemia 2 family in cancer. J Clin Oncol 2012; 30: 3127–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horn H, Ziepert M, Becher C, Barth TFE, Bernd H-W, Feller AC et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood 2013; 121: 2253–2263.

    Article  CAS  PubMed  Google Scholar 

  15. Wenzel S-S, Grau M, Mavis C, Hailfinger S, Wolf A, Madle H et al. MCL1 is deregulated in subgroups of diffuse large B-cell lymphoma. Leukemia 2013; 27: 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  16. Parry D, Guzi T, Shanahan F, Davis N, Prabhavalkar D, Wiswell D et al. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol Cancer Ther 2010; 9: 2344–2353.

    Article  CAS  PubMed  Google Scholar 

  17. Masters JR, Thomson JA, Daly-Burns B, Reid YA, Dirks WG, Packer P et al. Short tandem repeat profiling provides an international reference standard for human cell lines. Proc Natl Acad Sci USA 2001; 98: 8012–8017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 2006; 441: 106–110.

    Article  CAS  PubMed  Google Scholar 

  19. Oricchio E, Nanjangud G, Wolfe AL, Schatz JH, Mavrakis KJ, Jiang M et al. The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell 2011; 147: 554–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oricchio E, Ciriello G, Jiang M, Boice MH, Schatz JH, Heguy A et al. Frequent disruption of the RB pathway in indolent follicular lymphoma suggests a new combination therapy. J Exp Med 2014; 211: 1379–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schatz JH, Oricchio E, Wolfe AL, Jiang M, Linkov I, Maragulia J et al. Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. J Exp Med 2011; 208: 1799–1807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ . Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res 1996; 56: 2973–2978.

    CAS  PubMed  Google Scholar 

  23. Chao SH, Price DH . Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 2001; 276: 31793–31799.

    Article  CAS  PubMed  Google Scholar 

  24. MacCallum DE, Melville J, Frame S, Watt K, Anderson S, Gianella-Borradori A et al. Seliciclib (CYC202, R-Roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1. Cancer Res 2005; 65: 5399–5407.

    Article  CAS  PubMed  Google Scholar 

  25. Gojo I, Zhang B, Fenton RG . The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin Cancer Res 2002; 8: 3527–3538.

    CAS  PubMed  Google Scholar 

  26. Flynn J, Jones J, Johnson AJ, Andritsos L, Maddocks K, Jaglowski S et al. Dinaciclib is a novel cyclin dependent kinase inhibitor with significant clinical activity in relapsed and refractory chronic lymphocytic. Leukemia 2015; 29: 1524–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Booher RN, Hatch H, Dolinski BM, Nguyen T, Harmonay L, Al-Assaad A-S et al. MCL1 and BCL-xL levels in solid tumors are predictive of dinaciclib-induced apoptosis. PLoS One 2014; 9: e108371.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schuller A, Booher R, Cadzow L, Angagaw M, Harmonay L, Qu X et al. Abstract 699: optimized dosing strategies resulting in prolonged pathway inhibition enhance dinaciclib anti-tumor activity in preclinical xenograft models. Cancer Res 2013; 73: 699–699.

    Article  Google Scholar 

  29. Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A . BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 2007; 12: 171–185.

    Article  CAS  PubMed  Google Scholar 

  30. Ertel F, Nguyen M, Roulston A, Shore GC . Programming cancer cells for high expression levels of Mcl1. EMBO Rep 2013; 14: 328–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mills JR, Hippo Y, Robert F, Chen SMH, Malina A, Lin C-J et al. mTORC1 promotes survival through translational control of Mcl-1. Proc Natl Acad Sci USA 2008; 105: 10853–10858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kendrick SL, Redd L, Muranyi A, Henricksen LA, Stanislaw S, Smith LM et al. BCL2 antibodies targeted at different epitopes detect varying levels of protein expression and correlate with frequent gene amplification in diffuse large B-cell lymphoma. Hum Pathol 2014; 45: 2144–2153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 2013; 19: 202–208.

    Article  CAS  PubMed  Google Scholar 

  34. Montagnoli A, Valsasina B, Croci V, Menichincheri M, Rainoldi S, Marchesi V et al. A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat Chem Biol 2008; 4: 357–365.

    Article  CAS  PubMed  Google Scholar 

  35. Chen R, Wierda WG, Chubb S, Hawtin RE, Fox JA, Keating MJ et al. Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia. Blood 2009; 113: 4637–4645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Conroy A, Stockett DE, Walker D, Arkin MR, Hoch U, Fox JA et al. SNS-032 is a potent and selective CDK 2, 7 and 9 inhibitor that drives target modulation in patient samples. Cancer Chemother Pharmacol 2009; 64: 723–732.

    Article  CAS  PubMed  Google Scholar 

  37. Oki Y, Noorani M, Lin P, Davis RE, Neelapu SS, Ma L et al. Double hit lymphoma: the MD Anderson Cancer Center clinical experience. Br J Haematol 2014; 166: 891–901.

    Article  CAS  PubMed  Google Scholar 

  38. Egle A, Harris AW, Bath ML, O’Reilly L, Cory S . VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 2004; 103: 2276–2283.

    Article  CAS  PubMed  Google Scholar 

  39. Vaux DL, Cory S, Adams JM . Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440–442.

    Article  CAS  PubMed  Google Scholar 

  40. Kelly GL, Grabow S, Glaser SP, Fitzsimmons L, Aubrey BJ, Okamoto T et al. Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev 2014; 28: 58–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei G, Margolin AA, Haery L, Brown E, Cucolo L, Julian B et al. Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. Cancer Cell 2012; 21: 547–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008; 68: 3421–3428.

    Article  CAS  PubMed  Google Scholar 

  43. Kewalramani T, Zelenetz AD, Nimer SD, Portlock C, Straus D, Noy A et al. Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood 2004; 103: 3684–3688.

    Article  CAS  PubMed  Google Scholar 

  44. Velasquez WS, Cabanillas F, Salvador P, McLaughlin P, Fridrik M, Tucker S et al. Effective salvage therapy for lymphoma with cisplatin in combination with high-dose Ara-C and dexamethasone (DHAP). Blood 1988; 71: 117–122.

    CAS  PubMed  Google Scholar 

  45. Van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10: 389–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen S, Dai Y, Harada H, Dent P, Grant S . Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res 2007; 67: 782–791.

    Article  CAS  PubMed  Google Scholar 

  47. Nemunaitis JJ, Small KA, Kirschmeier P, Zhang D, Zhu Y, Jou Y-M et al. A first-in-human, phase 1, dose-escalation study of dinaciclib, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies. J Transl Med 2013; 11: 259.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Blum KA, Ruppert AS, Woyach JA, Jones JA, Andritsos L, Flynn JM et al. Risk factors for tumor lysis syndrome in patients with chronic lymphocytic leukemia treated with the cyclin-dependent kinase inhibitor, flavopiridol. Leukemia 2011; 25: 1444–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Davids MS, Seymour JF, Gerecitano JF, Kahl BS, Pagel JM, Wierda WG et al. Phase I study of ABT-199 (GDC-0199) in patients with relapsed/refractory (R/R) non-Hodgkin lymphoma (NHL): Responses observed in diffuse large B-cell (DLBCL) and follicular lymphoma (FL) at higher cohort doses. J Clin Oncol 2014; 32: 5s.

    Article  Google Scholar 

  50. Vandenberg CJ, Cory S . ABT-199, a new Bcl-2-specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood 2013; 121: 2285–2288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Abbvie Inc. for provision of ABT-199 for this study and Associate Scientific Director Joel D. Leverson for advice on its use in vivo. We thank Bethany Skovan, Gillian Paine-Murrieta and Erica Sontz of the UACC Experimental Mouse Shared Resource for invaluable help with mouse studies. Funded by the NIH/NCI (P30CA023074-34 sub-award), the University of Arizona Bio5 Institute (JHS), the University of Arizona Cancer Center (JHS) and the Lymphoma Research Foundation (JHS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H Schatz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Pongtornpipat, P., Tiutan, T. et al. Synergistic induction of apoptosis in high-risk DLBCL by BCL2 inhibition with ABT-199 combined with pharmacologic loss of MCL1. Leukemia 29, 1702–1712 (2015). https://doi.org/10.1038/leu.2015.99

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.99

Search

Quick links