Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Minimal residual disease

Peripheral blood minimal residual disease may replace bone marrow minimal residual disease as an immunophenotypic biomarker for impending relapse in acute myeloid leukemia

Abstract

As relapses are common in acute myeloid leukemia (AML), early relapse prediction is of high importance. Although conventional minimal residual disease (MRD) measurement is carried out in bone marrow (BM), peripheral blood (PB) would be an advantageous alternative source. This study aims to investigate the specificity of leukemia-associated immunophenotypes used for MRD detection in blood samples. Consistency of PB MRD as compared with BM MRD was determined in flow cytometric data of 205 paired BM and PB samples of 114 AML patients. A significant correlation was found between PB and BM MRD (r=0.67, P<0.001), while median PB MRD percentage was factor 4-5 lower compared with BM MRD. Primitive blast (CD34+/CD117+/CD133+) frequency was significantly lower in PB (median factor 23.7), indicating that PB MRD detection is more specific than BM. Cumulative incidence of relapse 1 year after induction therapy was 29% for PB MRD-negative and 89% for PB MRD-positive patients (P<0.001). Three-year OS was 52% for MRD-negative and 15% for MRD-positive patients (P=0.034). Similar differences were found after consolidation therapy. As PB MRD appeared to be an independent predictor for response duration, the highly specific PB MRD assay may have a prominent role in future MRD assessment in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pabst T, Vellenga E, van Putten W, Schouten HC, Graux C, Vekemans M-C et al. Favorable effect of priming with granulocyte colony-stimulating factor in remission induction of acute myeloid leukemia restricted to dose escalation of cytarabine. Blood 2012; 119: 5367–5373.

    Article  CAS  PubMed  Google Scholar 

  2. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 2003; 21: 4642–4649.

    Article  PubMed  Google Scholar 

  3. Freeman SD, Virgo P, Couzens S, Grimwade D, Russell N, Hills RK et al. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J Clin Oncol 2013; 31: 4123–4131.

    Article  PubMed  Google Scholar 

  4. Terwijn M, van Putten WL, Kelder A, van der Velden VH, Brooimans RA, Pabst T et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42 A study. J Clin Oncol 2013; 31: 3889–3897.

    Article  PubMed  Google Scholar 

  5. Shayegi N, Kramer M, Bornhauser M, Schaich M, Schetelig J, Platzbecker U et al. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood 2013; 122: 83–92.

    Article  CAS  PubMed  Google Scholar 

  6. Krönke J, Schlenk RF, Jensen K-O, Tschürtz F, Corbacioglu A, Gaidzik VI et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol 2011; 29: 2709–2716.

    Article  PubMed  Google Scholar 

  7. Guerrasio A, Pilatrino C, De Micheli D, Cilloni D, Serra A, Gottardi E et al. Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia 2002; 16: 1176–1181.

    Article  CAS  PubMed  Google Scholar 

  8. Sugimoto T, Das H, Imoto S, Murayama T, Gomyo H, Chakraborty S et al. Quantitation of minimal residual disease in t(8;21)-positive acute myelogenous leukemia patients using real-time quantitative RT-PCR. Am J Hematol 2000; 64: 101–106.

    Article  CAS  PubMed  Google Scholar 

  9. Mitterbauer G, Zimmer C, Pirc-Danoewinata H, Haas OA, Hojas S, Schwarzinger I et al. Monitoring of minimal residual disease in patients with MLL-AF6-positive acute myeloid leukaemia by reverse transcriptase polymerase chain reaction. Br J Haematol 2000; 109: 622–628.

    Article  CAS  PubMed  Google Scholar 

  10. San Miguel JF, Martínez A, Macedo A, Vidriales MB, López-Berges C, González M et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood 1997; 90: 2465–2470.

    CAS  PubMed  Google Scholar 

  11. Díez-Campelo M, Pérez-Simón JA, Pérez J, Alcoceba M, Richtmon J, Vidriales B et al. Minimal residual disease monitoring after allogeneic transplantation may help to individualize post-transplant therapeutic strategies in acute myeloid malignancies. Am J Hematol 2009; 84: 149–152.

    Article  PubMed  Google Scholar 

  12. Venditti A, Buccisano F, Del Poeta G, Maurillo L, Tamburini A, Cox C et al. Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood 2000; 96: 3948–3952.

    CAS  PubMed  Google Scholar 

  13. Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T . Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood 2004; 104: 3078–3085.

    Article  CAS  PubMed  Google Scholar 

  14. Feller N, van der Pol MA, van Stijn A, Weijers GW, Westra AH, Evertse BW et al. MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia 2004; 18: 1380–1390.

    Article  CAS  PubMed  Google Scholar 

  15. Al-Mawali A, Gillis D, Lewis I . The use of receiver operating characteristic analysis for detection of minimal residual disease using five-color multiparameter flow cytometry in acute myeloid leukemia identifies patients with high risk of relapse. Cytometry B Clin Cytom 2009; 76: 91–101.

    Article  PubMed  Google Scholar 

  16. Buccisano F, Maurillo L, Spagnoli A, Del Principe MI, Ceresoli E, Lo Coco F et al. Monitoring of minimal residual disease in acute myeloid leukemia. Curr Opin Oncol 2009; 21: 582–588.

    Article  PubMed  Google Scholar 

  17. Vidriales MB, San-Miguel JF, Orfao A, Coustan-Smith E, Campana D . Minimal residual disease monitoring by flow cytometry. Best Pract Res Clin Haematol 2003; 16: 599–612.

    Article  PubMed  Google Scholar 

  18. Brisco MJ, Sykes PJ, Hughes E, Dolman G, Neoh SH, Peng LM et al. Monitoring minimal residual disease in peripheral blood in B-lineage acute lymphoblastic leukaemia. Br J Haematol 1997; 99: 314–319.

    Article  CAS  PubMed  Google Scholar 

  19. Van Rhee F, Marks DI, Lin F, Szydlo RM, Hochhaus A, Treleaven J et al. Quantification of residual disease in Philadelphia-positive acute lymphoblastic leukemia: comparison of blood and bone marrow. Leukemia 1995; 9: 329–335.

    CAS  PubMed  Google Scholar 

  20. Van der Velden VH, Jacobs DC, Wijkhuijs AJ, Comans-Bitter WM, Willemse MJ, Hählen K et al. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 2002; 16: 1432–1436.

    Article  CAS  PubMed  Google Scholar 

  21. Coustan-Smith E, Sancho J, Hancock ML, Razzouk BI, Ribeiro RC, Rivera GK et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 2002; 100: 2399–2402.

    Article  CAS  PubMed  Google Scholar 

  22. Maurillo L, Buccisano F, Spagnoli A, Del Poeta G, Panetta P, Neri B et al. Monitoring of minimal residual disease in adult acute myeloid leukemia using peripheral blood as an alternative source to bone marrow. Haematologica 2007; 92: 605–611.

    Article  PubMed  Google Scholar 

  23. Van der Velden VH, van der Sluijs-Geling A, Gibson BE, te Marvelde JG, Hoogeveen PG, Hop WC et al. Clinical significance of flowcytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/MRC AML12 protocol. Leukemia 2010; 24: 1599–1606.

    Article  CAS  PubMed  Google Scholar 

  24. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010; 116: 354–365.

    Article  CAS  PubMed  Google Scholar 

  25. Feller N, van der Velden VH, Brooimans RA, Boeckx N, Preijers F, Kelder A et al. Defining consensus leukemia-associated immunophenotypes for detection of minimal residual disease in acute myeloid leukemia in a multicenter setting. Blood Cancer J 2013; 3: e129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Metz CE . Basic principles of ROC analysis. Semin Nucl Med 1978; 8: 283–298.

    Article  CAS  PubMed  Google Scholar 

  27. Paietta E . Minimal residual disease in acute myeloid leukemia: coming of age. Hematology Am Soc Hematol Educ Program 2012; 2012: 35–42.

    PubMed  Google Scholar 

  28. Buccisano F, Maurillo L, Del Principe MI, Del Poeta G, Sconocchia G, Lo-Coco F et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 2012; 119: 332–341.

    Article  CAS  PubMed  Google Scholar 

  29. Schuurhuis GJ, Ossenkoppele G . Minimal residual disease in acute myeloid leukemia: already predicting a safe haven? Expert Rev Hematol 2010; 3: 1–5.

    Article  PubMed  Google Scholar 

  30. Boeckx N, De Roover J, van der Velden VH, Maertens J, Uyttebroeck A, Vandenberghe P et al. Quantification of CBFB-MYH11 fusion gene levels in paired peripheral blood and bone marrow samples by real-time PCR. Leukemia 2005; 19: 1988–1990.

    Article  CAS  PubMed  Google Scholar 

  31. Leroy H, de Botton S, Grardel-Duflos N, Darre S, Leleu X, Roumier C et al. Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21). Leukemia 2005; 19: 367–372.

    Article  CAS  PubMed  Google Scholar 

  32. Stentoft J, Hokland P, Ostergaard M, Hasle H, Nyvold CG . Minimal residual core binding factor AMLs by real time quantitative PCR—initial response to chemotherapy predicts event free survival and close monitoring of peripheral blood unravels the kinetics of relapse. Leuk Res 2006; 30: 389–395.

    Article  CAS  PubMed  Google Scholar 

  33. Cilloni D, Renneville A, Hermitte F, Hills RK, Daly S, Jovanovic JV et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol 2009; 27: 5195–5201.

    Article  CAS  PubMed  Google Scholar 

  34. Cilloni D, Messa F, Arruga F, Defilippi I, Gottardi E, Fava M et al. Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica 2008; 93: 921–924.

    Article  PubMed  Google Scholar 

  35. Cribe AS, Steenhof M, Marcher CW, Petersen H, Frederiksen H, Friis LS . Extramedullary disease in patients with acute myeloid leukemia assessed by 18 F-FDG PET. Eur J Haematol 2013; 90: 273–278.

    Article  CAS  PubMed  Google Scholar 

  36. Terwijn M, Kelder A, Snel a N, Rutten AP, Scholten WJ, Oussoren YJ et al. Minimal residual disease detection defined as the malignant fraction of the total primitive stem cell compartment offers additional prognostic information in acute myeloid leukaemia. Int J Lab Hematol 2012; 34: 432–441.

    Article  CAS  PubMed  Google Scholar 

  37. Bachas C, Schuurhuis GJ, Assaraf YG, Kwidama ZJ, Kelder A, Wouters F et al. The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse. Leukemia 2012; 26: 1313–1320.

    Article  CAS  PubMed  Google Scholar 

  38. Terwijn M, Zeijlemaker W, Kelder A, Rutten AP, Snel AN, Scholten WJ et al. Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia. PLoS One 2014; 9: e107587.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ostronoff F, Othus M, Lazenby M, Estey E, Appelbaum FR, Evans A et al. Prognostic significance of NPM1 mutations in the absence of FLT3-internal tandem duplication in older patients with acute myeloid leukemia: a SWOG and UK National Cancer Research Institute/Medical Research Council report. J Clin Oncol 2015; 33: 1157–1164.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Amadori S, Suciu S, Stasi R, Salih HR, Selleslag D, Muus P et al. Sequential combination of gemtuzumab ozogamicin and standard chemotherapy in older patients with newly diagnosed acute myeloid leukemia: results of a randomized phase III trial by the EORTC and GIMEMA consortium (AML-17). J Clin Oncol 2013; 31: 4424–4430.

    Article  CAS  PubMed  Google Scholar 

  41. Clozel T, Renneville A, Venot M, Gardin C, Kelaidi C, Leroux G et al. Slow relapse in acute myeloid leukemia with inv(16) or t(16;16). Haematologica 2009; 94: 1466–1468.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank ZJ Kwidama for her help in data acquisition and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G J Schuurhuis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeijlemaker, W., Kelder, A., Oussoren-Brockhoff, Y. et al. Peripheral blood minimal residual disease may replace bone marrow minimal residual disease as an immunophenotypic biomarker for impending relapse in acute myeloid leukemia. Leukemia 30, 708–715 (2016). https://doi.org/10.1038/leu.2015.255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.255

This article is cited by

Search

Quick links