Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Mesenchymal stromal cells infusions improve refractory chronic graft versus host disease through an increase of CD5+ regulatory B cells producing interleukin 10

Abstract

Refractory chronic graft-versus-host disease (cGVHD) is a significant complication resulting from allogeneic hematopoietic stem cell transplantation (HSCT). Mesenchymal stromal cells (MSCs) have shown promise for treating refractory cGVHD, but the favorable effects of MSCs therapy in cGVHD are complex and not fully understood. In this prospective clinical study, 20 of 23 cGVHD patients had a complete response or partial response in a 12-month follow-up study. The most marked improvements in cGVHD symptoms were observed in the skin, oral mucosa and liver. Clinical improvement was accompanied by a significantly increased number of interleukin (IL)-10-producing CD5+ B cells. Importantly, CD5+ B cells from cGVHD patients showed increased IL-10 expression after MSCs treatment, which was associated with reduced inflammatory cytokine production by T cells. Mechanistically, MSCs could promote the survival and proliferation of CD5+ regulatory B cells (Bregs), and indoleamine 2, 3-dioxygenase partially participates in the MSC-mediated effects on Breg cells. Thus, CD5+ Breg cells may have an important role in the process of MSC-induced amelioration of refractory cGVHD and may provide new clues to reveal novel mechanisms of action for MSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Soiffer R . Immune modulation and chronic graft-versus-host disease. Bone Marrow Transplant 2008; 42 (Suppl 1): S66–S69.

    Article  CAS  PubMed  Google Scholar 

  2. Inamoto Y, Flowers ME . Treatment of chronic graft-versus-host disease in 2011. Curr Opin Hematol 2011 18: 414–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salem HK, Thiemermann C . Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010; 28: 585–596.

    CAS  PubMed  Google Scholar 

  4. Barzilay R, Melamed E, Offen D . Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells 2009; 27: 2509–2515.

    Article  CAS  PubMed  Google Scholar 

  5. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP . Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(high) forkhead box P3+ regulatory T cells. Clin Exp Immunol 2009; 156: 149–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Comoli P, Ginevri F, Maccario R, Avanzini MA, Marconi M, Groff A et al. Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrol Dial Transplant 2008; 23: 1196–1202.

    Article  CAS  PubMed  Google Scholar 

  7. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L . Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008; 111: 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  8. Kapoor S, Patel SA, Kartan S, Axelrod D, Capitle E, Rameshwar P . Tolerance-like mediated suppression by mesenchymal stem cells in patients with dust mite allergy-induced asthma. J Allergy Clin Immunol 2012; 129: 1094–1101.

    Article  CAS  PubMed  Google Scholar 

  9. Dazzi F, Lopes L, Weng L . Mesenchymal stromal cells: a key player in 'innate tolerance'? Immunology 2012; 137: 206–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ben-Ami E, Berrih-Aknin S, Miller A . Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun Rev 2011; 10: 410–415.

    Article  CAS  PubMed  Google Scholar 

  11. Francois M, Galipeau J . New insights on translational development of mesenchymal stromal cells for suppressor therapy. J Cell Physiol 2012; 227: 3535–3538.

    Article  CAS  PubMed  Google Scholar 

  12. Ge W, Jiang J, Baroja ML, Arp J, Zassoko R, Liu W et al. Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. Am J Transplant 2009; 9: 1760–1772.

    Article  CAS  PubMed  Google Scholar 

  13. Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M, Cugini D et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 2008; 181: 3933–3946.

    Article  CAS  PubMed  Google Scholar 

  14. Yanez R, Lamana ML, Garcia-Castro J, Colmenero I, Ramirez M, Bueren JA . Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 2006; 24: 2582–2591.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou H, Guo M, Bian C, Sun Z, Yang Z, Zeng Y et al. Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant 2010; 16: 403–412.

    Article  CAS  PubMed  Google Scholar 

  16. Weng JY, Du X, Geng SX, Peng YW, Wang Z, Lu ZS et al. Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone Marrow Transplant 2010; 45: 1732–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shimabukuro-Vornhagen A, Hallek MJ, Storb RF, von Bergwelt-Baildon MS . The role of B cells in the pathogenesis of graft-versus-host disease. Blood 2009; 114: 4919–4927.

    Article  PubMed  Google Scholar 

  18. Cugini D, Noris M . Toward a B-cell signature of tolerance? Kidney Int 2010; 78: 435–437.

    Article  CAS  PubMed  Google Scholar 

  19. Salinas GF, Braza F, Brouard S, Tak PP, Baeten D . The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin Immunol 2013; 146: 34–45.

    Article  CAS  PubMed  Google Scholar 

  20. Yoshizaki A, Miyagaki T, DiLillo DJ, Matsushita T, Horikawa M, Kountikov EI et al. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 2012; 491: 264–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klinker MW, Lundy SK . Multiple mechanisms of immune suppression by B lymphocytes. Mol Med 2012; 18: 123–137.

    Article  CAS  PubMed  Google Scholar 

  22. Soldevila G, Raman C, Lozano F . The immunomodulatory properties of the CD5 lymphocyte receptor in health and disease. Curr Opin Immunol 2011; 23: 310–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blazar BR, Murphy WJ, Abedi M . Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol 2012; 12: 443–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dalloul A . CD5: a safeguard against autoimmunity and a shield for cancer cells. Autoimmun Rev 2009; 8: 349–353.

    Article  CAS  PubMed  Google Scholar 

  25. Antin JH, Ault KA, Rappeport JM, Smith BR . B lymphocyte reconstitution after human bone marrow transplantation. Leu-1 antigen defines a distinct population of B lymphocytes. J Clin Invest 1987; 80: 325–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moins-Teisserenc H, Busson M, Herda A, Apete S, Peffault de Latour R, Robin M et al. CD19(+)CD5(+) B cells and B1-like cells following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2013; 19: 988–991.

    Article  CAS  PubMed  Google Scholar 

  27. Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant 2005; 11: 945–956.

    Article  PubMed  Google Scholar 

  28. Cutler C, Miklos D, Kim HT, Treister N, Woo SB, Bienfang D et al. Rituximab for steroid-refractory chronic graft-versus-host disease. Blood 2006; 108: 756–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baird K, Steinberg SM, Grkovic L, Pulanic D, Cowen EW, Mitchell SA et al. National Institutes of Health chronic graft-versus-host disease staging in severely affected patients: organ and global scoring correlate with established indicators of disease severity and prognosis. Biol Blood Marrow Transplant 2013; 19: 632–639.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Remberger M, Ackefors M, Berglund S, Blennow O, Dahllof G, Dlugosz A et al. Improved survival after allogeneic hematopoietic stem cell transplantation in recent years. A single-center study. Biol Blood Marrow Transplant 2011; 17: 1688–1697.

    Article  PubMed  Google Scholar 

  31. Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 2010; 32: 129–140.

    Article  CAS  PubMed  Google Scholar 

  32. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011; 117: 530–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van de Veen W, Stanic B, Yaman G, Wawrzyniak M, Sollner S, Akdis DG et al. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J Allergy Clin Immunol 2013; 131: 1204–1212.

    Article  CAS  PubMed  Google Scholar 

  34. Vadasz Z, Haj T, Kessel A, Toubi E . B-regulatory cells in autoimmunity and immune mediated inflammation. FEBS Lett 2013; 587: 2074–2078.

    Article  CAS  PubMed  Google Scholar 

  35. Kessel A, Haj T, Peri R, Snir A, Melamed D, Sabo E et al. Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmun Rev 2012; 11: 670–677.

    Article  CAS  PubMed  Google Scholar 

  36. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006; 24: 386–398.

    Article  CAS  PubMed  Google Scholar 

  37. Durali D, de Goer DHM, Giron-Michel J, Azzarone B, Delfraissy JF, Taoufik Y . In human B cells, IL-12 triggers a cascade of molecular events similar to Th1 commitment. Blood 2003; 102: 4084–4089.

    Article  CAS  PubMed  Google Scholar 

  38. Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 2000; 1: 475–482.

    Article  CAS  PubMed  Google Scholar 

  39. Jitschin R, Mougiakakos D, Von Bahr L, Volkl S, Moll G, Ringden O et al. Alterations in the cellular immune compartment of patients treated with third-party mesenchymal stromal cells following allogeneic hematopoietic stem cell transplantation. Stem Cells 2013; 31: 1715–1725.

    Article  CAS  PubMed  Google Scholar 

  40. Martinez C, Urbano-Ispizua A . Graft-versus-host disease therapy: something else beyond glucocorticoids? Haematologica 2011; 96: 1249–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chesneau M, Michel L, Degauque N, Brouard S . Regulatory B cells and tolerance in transplantation: from animal models to human. Front Immunol 2013; 4: 497.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jin G, Hamaguchi Y, Matsushita T, Hasegawa M, Le Huu D, Ishiura N et al. B-cell linker protein expression contributes to controlling allergic and autoimmune diseases by mediating IL-10 production in regulatory B cells. J Allergy Clin Immunol 2013; 131: 1674–1682.

    Article  CAS  PubMed  Google Scholar 

  43. Hill GR, Teshima T, Gerbitz A, Pan L, Cooke KR, Brinson YS et al. Differential roles of IL-1 and TNF-alpha on graft-versus-host disease and graft versus leukemia. J Clin Invest 1999; 104: 459–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Socie G, Mary JY, Lemann M, Daneshpouy M, Guardiola P, Meignin V et al. Prognostic value of apoptotic cells and infiltrating neutrophils in graft-versus-host disease of the gastrointestinal tract in humans: TNF and Fas expression. Blood 2004; 103: 50–57.

    Article  CAS  PubMed  Google Scholar 

  45. Le Huu D, Matsushita T, Jin G, Hamaguchi Y, Hasegawa M, Takehara K et al. Donor-derived regulatory B cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood 2013; 121: 3274–3283.

    Article  CAS  PubMed  Google Scholar 

  46. Weber M, Stein P, Prufer S, Rudolph B, Kreft A, Schmitt E et al. Donor and host B cell-derived IL-10 contributes to suppression of graft-versus-host disease. Eur J Immunol 2014; 1–9.

  47. Amel Kashipaz MR, Huggins ML, Lanyon P, Robins A, Powell RJ, Todd I . Assessment of Be1 and Be2 cells in systemic lupus erythematosus indicates elevated interleukin-10 producing CD5+ B cells. Lupus 2003; 12: 356–363.

    Article  CAS  PubMed  Google Scholar 

  48. Maby-El Hajjami H, Ame-Thomas P, Pangault C, Tribut O, DeVos J, Jean R et al. Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase. Cancer Res 2009; 69: 3228–3237.

    Article  CAS  PubMed  Google Scholar 

  49. Maby-El HH, Ame-Thomas P, Pangault C, Tribut O, DeVos J, Jean R et al. Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase. Cancer Res 2009; 69: 3228–3237.

    Article  Google Scholar 

  50. Traggiai E, Volpi S, Schena F, Gattorno M, Ferlito F, Moretta L et al. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 2008; 26: 562–569.

    Article  CAS  PubMed  Google Scholar 

  51. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006; 24: 386–398.

    Article  CAS  PubMed  Google Scholar 

  52. English K . Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 2013; 91: 19–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Armand Keating, Chee Peng Sum and Xianchang Li for their comments on this article. This study was supported by the National Basic Research Program of China (2012CBA01302 and 2010CB945401), the National Natural Science Foundation of China (81270646 and 31171398), the Key Scientific and Technological Projects of Guangdong Province (2007A032100003), the National Natural Science Foundation of Guangdong Province (S2013030013305), the Project of Guangdong Translational Medicine Public Platform and the Key Scientific and Technological Program of Guangzhou City (201400000003-3, 201300000089 and 2010U1-E00551), Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (GDUPS, 2013). The funding agencies had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author Contributions

YP, QL and APX designed the study, analyzed and interpreted the data and wrote the paper; XC and XZ performed the western blot and small interfering RN analyses; MK and KH performed the cell isolations and the survival and proliferation analyses; LL, HL and MZ performed the cell isolations and the analysis of the patients’ phenotypes; QL performed the ELISPOT; XL performed the cell sorting; QZ provided helpful discussions and edited the paper; FH, ZF and JS collected the patient samples and information and assessed the patients’ statuses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Xiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Chen, X., Liu, Q. et al. Mesenchymal stromal cells infusions improve refractory chronic graft versus host disease through an increase of CD5+ regulatory B cells producing interleukin 10. Leukemia 29, 636–646 (2015). https://doi.org/10.1038/leu.2014.225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.225

This article is cited by

Search

Quick links