Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

The relationship of JAK2V617F and acquired UPD at chromosome 9p in polycythemia vera

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  Google Scholar 

  2. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  Google Scholar 

  3. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  Google Scholar 

  4. Tefferi A . Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010; 24: 1128–1138.

    Article  CAS  Google Scholar 

  5. Vannucchi AM, Antonioli E, Guglielmelli P, Rambaldi A, Barosi G, Marchioli R et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 2007; 110: 840–846.

    Article  CAS  Google Scholar 

  6. Wang K, Swierczek S, Hickman K, Hakonarson H, Prchal JT . Convergent mechanisms of somatic mutations in polycythemia vera. Discov Med 2011; 12: 25–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tefferi A, Lasho TL, Schwager SM, Strand JS, Elliott M, Mesa R et al. The clinical phenotype of wild-type, heterozygous, and homozygous JAK2V617F in polycythemia vera. Cancer 2006; 106: 631–635.

    Article  CAS  Google Scholar 

  8. Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia 2010; 24: 1574–1579.

    Article  CAS  Google Scholar 

  9. Kralovics R, Guan Y, Prchal JT . Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol 2002; 30: 229–236.

    Article  CAS  Google Scholar 

  10. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 2009; 41: 446–449.

    Article  CAS  Google Scholar 

  11. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet 2009; 41: 455–459.

    Article  CAS  Google Scholar 

  12. Olcaydu D, Harutyunyan A, Jager R, Berg T, Gisslinger B, Pabinger I et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 2009; 41: 450–454.

    Article  CAS  Google Scholar 

  13. Klampfl T, Harutyunyan A, Berg T, Gisslinger B, Schalling M, Bagienski K et al. Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 2011; 118: 167–176.

    Article  CAS  Google Scholar 

  14. Vilaine M, Olcaydu D, Harutyunyan A, Bergeman J, Tiab M, Ramee JF et al. Homologous recombination of wild-type JAK2, a novel early step in the development of myeloproliferative neoplasm. Blood 2011; 118: 6468–6470.

    Article  CAS  Google Scholar 

  15. Swierczek SI, Agarwal N, Nussenzveig RH, Rothstein G, Wilson A, Artz A et al. Hematopoiesis is not clonal in healthy elderly women. Blood 2008; 112: 3186–3193.

    Article  CAS  Google Scholar 

  16. Solimini NL, Xu Q, Mermel CH, Liang AC, Schlabach MR, Luo J et al. Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 2012; 337: 104–109.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research funding from the National Human Genome Research Institute (NHGRI, Grant number: 5U54HG003273) to DW and from the National Institutes of Health (NIH, Grant number: NIH-P01CA108671) to JP. We thank MPD-RC consortium investigators and the MPD-RC Core laboratory for providing us with 109 additional PV samples for analysis. We thank Christian Buhay, Soo Kim, Charles White, Anton Ermeev, Donna Morton, Huyen Dinh, Ritika Raj, Lora Lewis, Christie Kovar, Sandra Lee, Michelle Bellair and Zhu Yiming for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D A Wheeler or J T Prchal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Swierczek, S., Lanikova, L. et al. The relationship of JAK2V617F and acquired UPD at chromosome 9p in polycythemia vera. Leukemia 28, 938–941 (2014). https://doi.org/10.1038/leu.2014.20

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.20

This article is cited by

Search

Quick links