Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies

Abstract

This work reports the tumoricidal effects of a novel investigational humanized anti-CD19 monoclonal antibody (Medi-551). An a-fucosylated antibody with increased affinity for human FcγRIIIA, Medi-551 is shown to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly (>5 h) and thus remain accessible to effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human natural killer (NK) cells and macrophages against precursor-B (pre-B) acute lymphoblastic leukemia (ALL) cell lines and pediatric patient blasts. Fluorescent imaging studies document immunological synapses formed between anti-CD19-bound target leukemia cells and effector cells and capture the kinetics of both NK-mediated killing and macrophage phagocytosis. Genetic polymorphisms in FcγRIIIA-158F/V modulate in vitro activities of effector cells, with FcγRIIIA-158V homozygotes or heterozygotes showing the strongest activity. Medi-551 treatment of severe combined immunodeficiency (SCID) mice engrafted with human pre-B cells led to prolonged animal survival and markedly reduced disease burden in blood, liver and bone marrow. These data show that anti-CD19 antibodies effectively recruit immune cells to pre-B ALL cells and support a move forward to early phase trials in this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pui CH, Robison LL, Look AT . Acute lymphoblastic leukaemia. Lancet 2008; 371: 1030–1043.

    Article  CAS  PubMed  Google Scholar 

  2. Malempati S, Gaynon PS, Sather H, La MK, Stork LC . Outcome after relapse among children with standard-risk acute lymphoblastic leukemia: children’s oncology group study CCG-1952. J Clin Oncol 2007; 25: 5800–5807.

    Article  PubMed  Google Scholar 

  3. Taylor RP, Lindorfer MA . Immunotherapeutic mechanisms of anti-CD20 monoclonal antibodies. Curr Opin Immunol 2008; 20: 444–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iida S, Kuni-Kamochi R, Mori K, Misaka H, Inoue M, Okazaki A et al. Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood. BMC Cancer 2009; 9: 58.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Munn DH, McBride M, Cheung NK . Role of low-affinity Fc receptors in antibody-dependent tumor cell phagocytosis by human monocyte-derived macrophages. Cancer Res 1991; 51: 1117–1123.

    CAS  PubMed  Google Scholar 

  6. Richards JO, Karki S, Lazar GA, Chen H, Dang W, Desjarlais JR . Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther 2008; 7: 2517–2527.

    Article  CAS  PubMed  Google Scholar 

  7. Bowles JA, Weiner GJ . CD16 polymorphisms and NK activation induced by monoclonal antibody-coated target cells. J Immunol Methods 2005; 304: 88–99.

    Article  CAS  PubMed  Google Scholar 

  8. Siberil S, Dutertre CA, Fridman WH, Teillaud JL . FcgammaR: The key to optimize therapeutic antibodies? Crit Rev Oncol Hematol 2007; 62: 26–33.

    Article  PubMed  Google Scholar 

  9. McEarchern JA, Oflazoglu E, Francisco L, McDonagh CF, Gordon KA, Stone I et al. Engineered anti-CD70 antibody with multiple effector functions exhibits in vitro and in vivo antitumor activities. Blood 2007; 109: 1185–1192.

    Article  CAS  PubMed  Google Scholar 

  10. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002; 99: 754–758.

    Article  CAS  PubMed  Google Scholar 

  11. Dall'Ozzo S, Tartas S, Paintaud G, Cartron G, Colombat P, Bardos P et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 2004; 64: 4664–4669.

    Article  CAS  PubMed  Google Scholar 

  12. Veeramani S, Wang SY, Dahle C, Blackwell S, Jacobus L, Knutson T et al. Rituximab infusion induces NK activation in lymphoma patients with the high-affinity CD16 polymorphism. Blood 2011; 118: 3347–3349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith MR . Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 2003; 22: 7359–7368.

    Article  CAS  PubMed  Google Scholar 

  14. Sato S, Ono N, Steeber DA, Pisetsky DS, Tedder TF . CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J Immunol 1996; 157: 4371–4378.

    CAS  PubMed  Google Scholar 

  15. Depoil D, Fleire S, Treanor BL, Weber M, Harwood NE, Marchbank KL et al. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat Immunol 2008; 9: 63–72.

    Article  CAS  PubMed  Google Scholar 

  16. Otero DC, Rickert RC . CD19 function in early and late B cell development. II CD19 facilitates the pro-B/pre-B transition. J Immunol 2003; 171: 5921–5930.

    Article  CAS  PubMed  Google Scholar 

  17. Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY et al. Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res 2008; 68: 8049–8057.

    Article  CAS  PubMed  Google Scholar 

  18. Awan FT, Lapalombella R, Trotta R, Butchar JP, Yu B, Benson DM et al. CD19 targeting of chronic lymphocytic leukemia with a novel Fc-domain-engineered monoclonal antibody. Blood 2010; 115: 1204–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yazawa N, Hamaguchi Y, Poe JC, Tedder TF . Immunotherapy using unconjugated CD19 monoclonal antibodies in animal models for B lymphocyte malignancies and autoimmune disease. Proc Natl Acad Sci USA 2005; 102: 15178–15183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu XY, Pop LM, Tsai L, Pop IV, Vitetta ES . Chimeric, divalent and tetravalent anti-CD19 monoclonal antibodies with potent in vitro and in vivo antitumor activity against human B-cell lymphoma and pre-B acute lymphoblastic leukemia cell lines. Int J Cancer 2010; 129: 497–506.

    Article  PubMed  Google Scholar 

  21. Molhoj M, Crommer S, Brischwein K, Ran D, Sriskandarajah M, Hoffmann P et al. CD19-/CD3-bispecific antibody of the BiTE class is far superior to tandem diabody with respect to redirected tumor cell lysis. Mol Immunol 2007; 44: 1935–1943.

    Article  CAS  PubMed  Google Scholar 

  22. Herbst R, Wang Y, Gallagher S, Mittereder N, Kuta E, Damschroder M et al. B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther 2010; 335: 213–222.

    Article  CAS  PubMed  Google Scholar 

  23. Raju TS . Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 2008; 20: 471–478.

    Article  CAS  PubMed  Google Scholar 

  24. Ward E, Mittereder N, Kuta E, Sims GP, Bowen MA, Dall'Acqua W et al. A glycoengineered anti-CD19 antibody with potent antibody-dependent cellular cytotoxicity activity in vitro and lymphoma growth inhibition in vivo. Br J Haematol 2011; 155: 426–437.

    Article  CAS  PubMed  Google Scholar 

  25. Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S et al. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res 2007; 67: 8882–8890.

    Article  CAS  PubMed  Google Scholar 

  26. Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 2002; 277: 26733–26740.

    Article  CAS  PubMed  Google Scholar 

  27. Nimmerjahn F, Ravetch JV . Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 2008; 8: 34–47.

    Article  CAS  PubMed  Google Scholar 

  28. Meng X, Matlawska-Wasowska K, Girodon F, Mazel T, Willman CL, Atlas S et al. GSI-I (Z-LLNle-CHO) inhibits gamma-secretase and the proteosome to trigger cell death in precursor-B acute lymphoblastic leukemia. Leukemia 2011; 25: 1135–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M . Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 1997; 90: 1109–1114.

    CAS  PubMed  Google Scholar 

  30. Otero DC, Omori SA, Rickert RC . Cd19-dependent activation of Akt kinase in B-lymphocytes. J Biol Chem 2001; 276: 1474–1478.

    Article  CAS  PubMed  Google Scholar 

  31. Sutton VR, Wowk ME, Cancilla M, Trapani JA . Caspase activation by granzyme B is indirect, and caspase autoprocessing requires the release of proapoptotic mitochondrial factors. Immunity 2003; 18: 319–329.

    Article  CAS  PubMed  Google Scholar 

  32. Voskoboinik I, Smyth MJ, Trapani JA . Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 2006; 6: 940–952.

    Article  CAS  PubMed  Google Scholar 

  33. Alter G, Malenfant JM, Altfeld M . CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 2004; 294: 15–22.

    Article  CAS  PubMed  Google Scholar 

  34. Kohrt HE, Houot R, Goldstein MJ, Weiskopf K, Alizadeh AA, Brody J et al. CD137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies. Blood 2011; 117: 2423–2432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lazar GA, Dang W, Karki S, Vafa O, Js Peng, Hyun L et al. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 2006; 103: 4005–4010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S et al. Enhancing the potency of therapeutic monoclonal antibodies via Fc optimization. Adv Enzyme Regul 2008; 48: 152–164.

    Article  CAS  PubMed  Google Scholar 

  37. Horton HM, Bernett MJ, Peipp M, Pong E, Karki S, Chu SY et al. Fc-engineered anti-CD40 antibody enhances multiple effector functions and exhibits potent in vitro and in vivo antitumor activity against hematologic malignancies. Blood 116: 3004–3012.

    Article  CAS  PubMed  Google Scholar 

  38. Weng WK, Levy R . Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 2003; 21: 3940–3947.

    Article  CAS  PubMed  Google Scholar 

  39. Zalevsky J, Leung IW, Karki S, Chu SY, Zhukovsky EA, Desjarlais JR et al. The impact of Fc engineering on an anti-CD19 antibody: increased Fcgamma receptor affinity enhances B-cell clearing in nonhuman primates. Blood 2009; 113: 3735–3743.

    Article  CAS  PubMed  Google Scholar 

  40. Cardarelli PM, Rao-Naik C, Chen S, Huang H, Pham A, Moldovan-Loomis MC et al. A nonfucosylated human antibody to CD19 with potent B-cell depletive activity for therapy of B-cell malignancies. Cancer Immunol Immunother 2010; 59: 257–265.

    Article  CAS  PubMed  Google Scholar 

  41. Bologna L, Gotti E, Manganini M, Rambaldi A, Intermesoli T, Introna M et al. Mechanism of action of type II, glycoengineered, anti-CD20 monoclonal antibody GA101 in B-chronic lymphocytic leukemia whole blood assays in comparison with rituximab and alemtuzumab. J Immunol 2011; 186: 3762–3769.

    Article  CAS  PubMed  Google Scholar 

  42. Cherukuri A, Cheng PC, Pierce SK . The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J Immunol 2001; 167: 163–172.

    Article  CAS  PubMed  Google Scholar 

  43. Sieber T, Schoeler D, Ringel F, Pascu M, Schriever F . Selective internalization of monoclonal antibodies by B-cell chronic lymphocytic leukaemia cells. Br J Haematol 2003; 121: 458–461.

    Article  CAS  PubMed  Google Scholar 

  44. Topham NJ, Hewitt EW . Natural killer cell cytotoxicity: how do they pull the trigger? Immunology 2009; 128: 7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krzewski K, Strominger JL . The killer's kiss: the many functions of NK cell immunological synapses. Curr Opin Cell Biol 2008; 20: 597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hatjiharissi E, Hansen M, Santos DD, Xu L, Leleu X, Dimmock EW et al. Genetic linkage of Fc gamma RIIa and Fc gamma RIIIa and implications for their use in predicting clinical responses to CD20-directed monoclonal antibody therapy. Clin Lymphoma Myeloma 2007; 7: 286–290.

    Article  CAS  PubMed  Google Scholar 

  47. Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM . SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res 2011; 17: 6448–6458.

    Article  CAS  PubMed  Google Scholar 

  48. Baeuerle PA, Reinhardt C . Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 2009; 69: 4941–4944.

    Article  CAS  PubMed  Google Scholar 

  49. Borowitz MJ, Pullen DJ, Winick N, Martin PL, Bowman WP, Camitta B . Comparison of diagnostic and relapse flow cytometry phenotypes in childhood acute lymphoblastic leukemia: implications for residual disease detection: a report from the children's oncology group. Cytometry B Clin Cytom 2005; 68: 18–24.

    Article  PubMed  Google Scholar 

  50. Leonard JP, Schuster SJ, Emmanouilides C, Couture F, Teoh N, wegener WA et al. Durable complete responses from therapy with combined epratuzumab and rituximab: final results from an international multicenter, phase 2 study in recurrent, indolent, non-Hodgkin lymphoma. Cancer 2008; 113: 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  51. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 2010; 142: 699–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gluck WL, Hurst D, Yuen A, Levine AM, Dayton MA, Gockerman JP et al. Phase I studies of interleukin (IL)-2 and rituximab in B-cell non-hodgkin's lymphoma: IL-2 mediated natural killer cell expansion correlations with clinical response. Clin Cancer Res 2004; 10: 2253–2264.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KM-W received salary support from LLS, P50/GM065794 and the UNM Pediatrics Department. We thank UNM Pediatric Hematology/Oncology division for acquiring consented pre-B ALL samples and Anna Holmes for technical assistance. We acknowledge Flow Cytometry, Fluorescent Microscopy, Human Tissue Repository and Animal Resource Facilities at UNM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B S Wilson.

Ethics declarations

Competing interests

KM-W, SSW, BSW and SS have no relevant financial conflicts to disclose. RH, YW and EW are employees of MedImmune.

Additional information

Author contributions

KM-W designed and performed the research, analyzed data and wrote the manuscript. EW prepared Medi-551 for research. SS genotyped human cells. YW participated in designing the research. SSW provided pre-B ALL samples and designed the research. RH originated the project. BSW originated, supervised the project and wrote the manuscript. All authors reviewed the manuscript.

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matlawska-Wasowska, K., Ward, E., Stevens, S. et al. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies. Leukemia 27, 1263–1274 (2013). https://doi.org/10.1038/leu.2013.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.5

Keywords

This article is cited by

Search

Quick links