Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Efficient transduction of healthy and malignant plasma cells by lentiviral vectors pseudotyped with measles virus glycoproteins

Abstract

A lot of genes deregulated in malignant plasma cells (PCs) involved in multiple myeloma have been reported these last years. The expression of some of these genes is associated with poor survival. A critical step is to elucidate the biological mechanisms triggered by these gene products. Such studies are hampered by the difficulty to obtain malignant PCs and to genetically modify them. Usual lentiviral vectors (LVs) pseudotyped with vesicular stomatitis virus envelope glycoprotein poorly transduced healthy and malignant PCs. Here, we report that LVs pseudotyped with the hemagglutinin and fusion glycoproteins from the measles Edmonston strain (H/F-LVs) can efficiently and stably transduce healthy and primary malignant PCs, without modifying their main phenotypic characteristics. Both LV pseudotypes efficiently transduced human myeloma cell lines. Importantly, both healthy and malignant PCs expressed CD46 and SLAMF1/CD150 membrane proteins, which are critical receptors for binding and productive genetic modification by H/F-LVs. The ability to efficiently introduce and express a given gene into PCs opens the possibility to study in detail PC biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Laubach J, Richardson P, Anderson K . Multiple myeloma. Annu Rev Med 2011; 62: 249–264.

    Article  CAS  Google Scholar 

  2. Yoshida T, Mei H, Dörner T, Hiepe F, Radbruch A, Fillatreau S et al. Memory B and memory plasma cells. Immunol Rev 2010; 237: 117–139.

    Article  CAS  Google Scholar 

  3. Kuehl WM, Bergsagel PL . Early genetic events provide the basis for a clinical classification of multiple myeloma. Hematol Am Soc Hematol Educ Program 2005; 2005: 346–352.

    Article  Google Scholar 

  4. Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Melton III LJ . Long-term follow-up of 241 patients with monoclonal gammopathy of undetermined significance: the original Mayo Clinic Series 25 years later. Mayo Clin Proc 2004; 79: 859–866.

    Article  Google Scholar 

  5. Munshi NC, Avet-Loiseau H . Genomics in multiple myeloma. Clin Cancer Res 2011; 17: 1234–1242.

    Article  CAS  Google Scholar 

  6. Albarracin F, Fonseca R . Plasma cell leukemia. Blood Rev 2011; 25: 107–112.

    Article  CAS  Google Scholar 

  7. Moreaux J, Klein B, Bataille R, Descamps G, Maiga S, Hose D et al. A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines. Haematologica 2011; 96: 574–582.

    Article  CAS  Google Scholar 

  8. De Vos J, Bagnis C, Bonnafoux L, Requirand G, Jourdan M, Imbert MC et al. Comparison of murine leukemia virus, human immunodeficiency virus, and adeno-associated virus vectors for gene transfer in multiple myeloma: lentiviral vectors demonstrate a striking capacity to transduce low-proliferating primary tumor cells. Hum Gene Ther 2003; 14: 1727–1739.

    Article  CAS  Google Scholar 

  9. Frecha C, Costa C, Levy C, Negre D, Russell SJ, Maisner A et al. Efficient and stable transduction of resting B lymphocytes and primary chronic lymphocyte leukemia cells using measles virus gp displaying lentiviral vectors. Blood 2009; 114: 3173–3180.

    Article  CAS  Google Scholar 

  10. Frecha C, Costa C, Negre D, Gauthier E, Russell SJ, Cosset FL et al. Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood 2008; 112: 4843–4852.

    Article  CAS  Google Scholar 

  11. Hummel HD, Kuntz G, Russell SJ, Nakamura T, Greiner A, Einsele H et al. Genetically engineered attenuated measles virus specifically infects and kills primary multiple myeloma cells. J Gen Virol 2009; 90: 693–701.

    Article  CAS  Google Scholar 

  12. Msaouel P, Dispenzieri A, Galanis E . Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. Curr Opin Mol Ther 2009; 11: 43–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stief AE, McCart JA . Oncolytic virotherapy for multiple myeloma. Expert Opin Biol Ther 2008; 8: 463–473.

    Article  CAS  Google Scholar 

  14. Jourdan M, Mahtouk K, Veyrune JL, Couderc G, Fiol G, Redal N et al. Delineation of the roles of paracrine and autocrine interleukin-6 (IL-6) in myeloma cell lines in survival versus cell cycle. A possible model for the cooperation of myeloma cell growth factors. Eur Cytokine Netw 2005; 16: 57–64.

    CAS  PubMed  Google Scholar 

  15. Hose D, Reme T, Hielscher T, Moreaux J, Messner T, Seckinger A et al. Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma. Haematologica 2011; 96: 87–95.

    Article  Google Scholar 

  16. Gu ZJ, Vos JD, Rebouissou C, Jourdan M, Zhang XG, Rossi JF et al. Agonist anti-gp130 transducer monoclonal antibodies are human myeloma cell survival and growth factors. Leukemia 2000; 14: 188–197.

    Article  CAS  Google Scholar 

  17. Rebouissou C, Wijdenes J, Autissier P, Tarte K, Costes V, Liautard J et al. A gp130 interleukin-6 transducer-dependent SCID model of human multiple myeloma. Blood 1998; 91: 4727–4737.

    CAS  PubMed  Google Scholar 

  18. Zhang XG, Gu ZJ, Lu ZY, Yasukawa K, Yancopoulos GD, Turner K et al. Ciliary neurotropic factor, interleukin 11, leukemia inhibitory factor, and oncostatin M are growth factors for human myeloma cell lines using the interleukin 6 signal transducer gp130. J Exp Med 1994; 179: 1337–1342.

    Article  CAS  Google Scholar 

  19. Jourdan M, Caraux A, De Vos J, Fiol G, Larroque M, Cognot C et al. An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. Blood 2009; 114: 5173–5181.

    Article  CAS  Google Scholar 

  20. Maurice M, Verhoeyen E, Salmon P, Trono D, Russell SJ, Cosset FL . Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell-activating polypeptide. Blood 2002; 99: 2342–2350.

    Article  CAS  Google Scholar 

  21. Frecha C, Fusil F, Cosset FL, Verhoeyen E . In vivo gene delivery into hCD34+ cells in a humanized mouse model. Methods Mol Biol 2011; 737: 367–390.

    Article  CAS  Google Scholar 

  22. Caraux A, Perez-Andres M, Larroque M, Requirand G, Lu ZY, Kanouni T et al. Mobilization of plasma cells in healthy individuals treated with granulocyte colony-stimulating factor for haematopoietic stem cell collection. Immunology 2011; 132: 266–272.

    Article  CAS  Google Scholar 

  23. Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007; 21: 1079–1088.

    Article  CAS  Google Scholar 

  24. Frecha C, Levy C, Costa C, Negre D, Amirache F, Buckland R et al. Measles virus glycoprotein-pseudotyped lentiviral vector-mediated gene transfer into quiescent lymphocytes requires binding to both SLAM and CD46 entry receptors. J Virol 2011; 85: 5975–5985.

    Article  CAS  Google Scholar 

  25. Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008; 93: 431–438.

    Article  Google Scholar 

  26. Killmann SA, Cronkite EP, Fliedner TM, Bond VP . Cell proliferation in multiple myeloma studied with tritiated thymidine in vivo. Lab Invest 1962; 11: 845–853.

    CAS  PubMed  Google Scholar 

  27. Decaux O, Lode L, Magrangeas F, Charbonnel C, Gouraud W, Jezequel P et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: A Study of the Intergroupe Francophone du Myelome. J Clin Oncol 2008; 26: 4798–4805.

    Article  CAS  Google Scholar 

  28. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 2007; 109: 1692–1700.

    Article  CAS  Google Scholar 

  29. Zhan F, Barlogie B, Mulligan G, Shaughnessy Jr JD, Bryant B . High-risk myeloma: a gene expression based risk-stratification model for newly diagnosed multiple myeloma treated with high-dose therapy is predictive of outcome in relapsed disease treated with single-agent bortezomib or high-dose dexamethasone. Blood 2008; 111: 968–969.

    Article  CAS  Google Scholar 

  30. Di Bernardo A, Macor P, Guarnotta C, Franco G, Florena AM, Tedesco F et al. Humoral immunotherapy of multiple myeloma: perspectives and perplexities. Expert Opin Biol Ther 2010; 10: 863–873.

    Article  CAS  Google Scholar 

  31. Lu ZY, Condomines M, Tarte K, Nadal L, Delteil MC, Rossi JF et al. B7-1 and 4-1BB ligand expression on a myeloma cell line makes it possible to expand autologous tumor-specific cytotoxic T cells in vitro. Exp Hematol 2007; 35: 443–453.

    Article  Google Scholar 

  32. Tarte K, Zhang XG, Legouffe E, Hertog C, Mehtali M, Rossi JF et al. Induced expression of B7-1 on myeloma cells following retroviral gene transfer results in tumor-specific recognition by cytotoxic T cells. J Immunol 1999; 163: 514–524.

    CAS  PubMed  Google Scholar 

  33. Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KGC, Dorner T et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 2006; 6: 741–750.

    Article  CAS  Google Scholar 

  34. Levy C, Frecha C, Costa C, Rachinel N, Salles G, Cosset FL et al. Lentiviral vectors and transduction of human cancer B cells. Blood 2010; 116: 498–500.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from ARC (SL220110603450, Paris, France), the European Community (FP7- OVERMYR), the ‘Agence Nationale pour la Recherche contre le SIDA et les Hépatites Virales’ (ANRS), the ‘Agence Nationale de la Recherche’ (ANR) and the European Community (FP7-HEALTH-2007-B/222878 ‘PERSIST’ and FP7-GENTHALTHER Erare, ERC-2008-AdG-233130-HEPCENT). MS is supported by a grant from the Guillaume Espoir Association (Saint-Genis-Laval, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Klein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenhals, M., Frecha, C., Bruyer, A. et al. Efficient transduction of healthy and malignant plasma cells by lentiviral vectors pseudotyped with measles virus glycoproteins. Leukemia 26, 1663–1670 (2012). https://doi.org/10.1038/leu.2012.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.36

Keywords

This article is cited by

Search

Quick links