Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Mutations of the epigenetics-modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in de novo acute myeloid leukemia

Abstract

Gene mutations were found in acute myeloid leukemia (AML) and their importance has been noted. To clarify the importance and stability of mutations, we examined gene mutations in paired samples at diagnosis and relapse of 34 adult AML patients. Five acquired gene mutations were detected at relapse. Of the 45 gene mutations at diagnosis, 11 of them were lost at relapse. The acquired mutations at relapse were all class I mutations as Fms-like tyrosine kinase 3 (FLT3) and rat sarcoma viral oncogene homolog (RAS) mutations. The disappeared mutations at relapse were 3 of 11 internal tandem duplications of FLT3 (FLT3-ITD) (27.3%), 3 of 3 FLT3 tyrosine kinase domain (FLT3-TKD) (100%), 3 of 13 Nucleophosmin 1 (23.1%) and 2 of 5 CCAAT/enhancer-binding protein-α (40%) mutations. However, epigenetics-modifying gene (DNMT3a, TET2 and IDH1/2) mutations had no change between diagnosis and relapse samples, and may become minimal residual disease marker. The frequency of FLT3-ITD at relapse in patients with DNMT3a mutation at diagnosis is significantly higher than those in patients without them (P=0.001). Moreover, the high frequency of FLT3-ITD at relapse is also seen in AML cases that initially present with any epigenetics-modifying gene mutations (P<0.001). Our results indicate that epigenetics-modifying gene mutations may cause genetic instability and induce FLT3-ITD, leading to resistance to therapy and relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Keating MJ, Kantarjian H, Smith TL, Estey E, Walters R, Andersson B et al. Response to salvage therapy and survival after relapse in acute myelogenous leukemia. J Clin Oncol 1989; 7: 1071–1080.

    Article  CAS  PubMed  Google Scholar 

  2. Giles F, O’Brien S, Cortes J, Verstovsek S, Bueso-Ramos C, Shan J et al. Outcome of patients with acute myelogenous leukemia after second salvage therapy. Cancer 2005; 104: 547–554.

    Article  PubMed  Google Scholar 

  3. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  4. Byrd JC, Mrózek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  5. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council Trials. Blood 2010; 116: 354–365.

    Article  CAS  PubMed  Google Scholar 

  6. Garson OM, Hagemeijer A, Sakurai M, Reeves BR, Swansbury GJ, Williams GJ et al. Cytogenetic studies of 103 patients with acute myelogenous leukemia in relapse. Cancer Genet Cytogenet 1989; 40: 187–202.

    Article  CAS  PubMed  Google Scholar 

  7. Estey E, Keating MJ, Pierce S, Stass S . Change in karyotype between diagnosis and first relapse in acute myelogenous leukemia. Leukemia 1995; 9: 972–976.

    CAS  PubMed  Google Scholar 

  8. Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S et al. Favorable prognostic significance of C/EBPα mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002; 100: 2717–2723.

    Article  CAS  PubMed  Google Scholar 

  9. Pabst T, Eyholzer M, Fos J, Mueller BU . Heterogeneity within AML with C/EBPα mutations; only C/EBPα double mutations, but not single C/EBPα mutations are associated with favourable prognosis. Br J Cancer 2009; 100: 1343–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fröhling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S et al. C/EBPα mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004; 22: 624–633.

    Article  PubMed  Google Scholar 

  11. Wouters BJ, Löwenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R . Double C/EBPα mutations, but not single C/EBPα mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 2009; 113: 3088–3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3-internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  13. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  14. Fröhling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002; 100: 4372–4380.

    Article  PubMed  Google Scholar 

  15. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005; 106: 3733–3739.

    Article  CAS  PubMed  Google Scholar 

  16. Döhner K, Schlenk RF, Habdank M, Scholl C, Rücker FG, Corbacioglu A et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 2005; 106: 3740–3746.

    Article  PubMed  Google Scholar 

  17. Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006; 107: 4011–4020.

    Article  CAS  PubMed  Google Scholar 

  18. Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000; 96: 2108–2115.

    CAS  PubMed  Google Scholar 

  19. Shigesada K, van de Sluis B, Liu PP . Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene 2004; 23: 4297–4307.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML, Dayaram T, Owens BM et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 2004; 21: 853–863.

    Article  CAS  PubMed  Google Scholar 

  21. Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 2008; 22: 915–931.

    Article  CAS  PubMed  Google Scholar 

  22. Schlenk RF, Döhner K, Krauter J, Fröhling S, Corbacioglu A, Bullinger L et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909–1918.

    Article  CAS  PubMed  Google Scholar 

  23. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3a mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thol F, Damm F, Lüdeking A, Winschel C, Wagner K, Morgan M et al. Incidence and prognostic influence of DNMT3a mutations in acute myeloid leukemia. J Clin Oncol 2011; 29: 2889–2896.

    Article  CAS  PubMed  Google Scholar 

  25. Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrózek K, Margeson D et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 2348–2355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boissel N, Nibourel O, Renneville A, Gardin C, Reman O, Contentin N et al. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the Acute Leukemia French Association group. J Clin Oncol 2010; 28: 3717–3723.

    Article  CAS  PubMed  Google Scholar 

  27. Chou WC, Chou SC, Liu CY, Chen CY, Hou HA, Kuo YY et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 2011; 118: 3803–3810.

    CAS  PubMed  Google Scholar 

  28. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen Y, Zhu YM, Fan X, Shi JY, Wang QR, Yan XJ et al. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood 2011; 118: 5593–5603.

    Article  CAS  PubMed  Google Scholar 

  31. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011; 469: 356–361.

    Article  CAS  PubMed  Google Scholar 

  32. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 2011; 469: 362–367.

    Article  CAS  PubMed  Google Scholar 

  33. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wakita S, Yamaguchi H, Miyake K, Mitamura Y, Kosaka F, Dan K et al. Importance of c-kit mutation detection method sensitivity in prognostic analyses of t(8;21)(q22;q22) acute myeloid leukemia. Leukemia 2011; 25: 1423–1432.

    Article  CAS  PubMed  Google Scholar 

  35. Krönke J, Schlenk RF, Jensen KO, Tschürtz F, Corbacioglu A, Gaidzik VI et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol 2011; 29: 2709–2716.

    Article  PubMed  Google Scholar 

  36. Weisberg E, Sattler M, Ray A, Griffin JD . Drug resistance in mutant FLT3-positive AML. Oncogene 2010; 29: 5120–5134.

    Article  CAS  PubMed  Google Scholar 

  37. Kindler T, Lipka DB, Fischer T . FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 2010; 116: 5089–5102.

    Article  CAS  PubMed  Google Scholar 

  38. Nakasone H, Izutsu K, Wakita S, Yamaguchi H, Muramatsu-Kida M, Usuki K . Autologous stem cell transplantation with PCR-negative graft would be associated with a favorable outcome in core-binding factor acute myeloid leukemia. Biol Blood Marrow Transplant 2008; 14: 1262–1269.

    Article  CAS  PubMed  Google Scholar 

  39. Yamaguchi H, Hanawa H, Uchida N, Inamai M, Sawaguchi K, Mitamura Y et al. Multistep pathogenesis of leukemia via the MLL-AF4 chimeric gene/FLT3 gene tyrosine kinase domain (TKD) mutation-related enhancement of S100A6 expression. Exp Hematol 2009; 37: 701–714.

    Article  CAS  PubMed  Google Scholar 

  40. Döhner K, Tobis K, Ulrich R, Fröhling S, Benner A, Schlenk RF et al. Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol 2002; 20: 3254–3261.

    Article  PubMed  Google Scholar 

  41. Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 2000; 14: 796–804.

    Article  CAS  PubMed  Google Scholar 

  42. Ohno R, Kato Y, Nagura E, Murase T, Okumura M, Yamada H et al. Behenoyl cytosine arabinoside, daunorubicin, 6-mercaptopurine, and prednisolone combination therapy for acute myelogenous leukemia in adults and prognostic factors related to remission duration and survival length. J Clin Oncol 1986; 4: 1740–1747.

    Article  CAS  PubMed  Google Scholar 

  43. Ohno R, Kobayashi T, Tanimoto M, Hiraoka A, Imai K, Asou N et al. Randomized study of individualized induction therapy with or without vincristine, and of maintenance-intensification therapy between 4 or 12 courses in adult acute myeloid leukemia. AML-87 Study of the Japan Adult Leukemia Study Group. Cancer 1993; 71: 3888–3895.

    Article  CAS  PubMed  Google Scholar 

  44. Kobayashi T, Miyawaki S, Tanimoto M, Kuriyama K, Murakami H, Yoshida M et al. Randomized trials between behenoyl cytarabine and cytarabine in combination induction and consolidation therapy, and with or without ubenimex after maintenance/intensification therapy in adult acute myeloid leukemia. The Japan Leukemia Study Group. J Clin Oncol 1996; 14: 204–213.

    Article  CAS  PubMed  Google Scholar 

  45. Miyawaki S, Kobayashi T, Tanimoto M, Kuriyama K, Murakami H, Yoshida M et al. Comparison of leukopenia between cytarabine and behenoyl cytarabine in JALSG AML-89 consolidation therapy. The Japan Adult Leukemia Study Group. Int J Hematol 1999; 70: 56–57.

    CAS  PubMed  Google Scholar 

  46. Jehn U, Göldel N, Vehling-Kaiser U . Low-dose cytosine arabinoside (LD-Ara C) treatment in dysmyelopoietic syndromes (DMPS) and acute myelogenous leukemia (AML). Anticancer Res 1987; 7: 505–508.

    CAS  PubMed  Google Scholar 

  47. Bolwell BJ, Cassileth PA, Gale RP . Low dose cytosine arabinoside in myelodysplasia and acute myelogenous leukemia: a review. Leukemia 1987; 1: 575–579.

    CAS  PubMed  Google Scholar 

  48. Bai A, Kojima H, Hori M, Nara N, Komeno T, Hasegawa Y et al. Priming with G-CSF effectively enhances low-dose Ara-C-induced in vivo apoptosis in myeloid leukemia cells. Exp Hematol 1999; 27: 259–265.

    Article  CAS  PubMed  Google Scholar 

  49. Kiyoi H, Yanada M, Ozekia K . Clinical significance of FLT3 in leukemia. Int J Hematol 2005; 82: 85–92.

    Article  CAS  PubMed  Google Scholar 

  50. Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC . Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002; 100: 2393–2398.

    Article  CAS  PubMed  Google Scholar 

  51. Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002; 100: 2387–2392.

    Article  CAS  PubMed  Google Scholar 

  52. Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S . Prognostic relevance of FLT3-TKD mutations in AML: the combination matters--an analysis of 3082 patients. Blood 2008; 111: 2527–2537.

    Article  CAS  PubMed  Google Scholar 

  53. Cloos J, Goemans BF, Hess CJ, van Oostveen JW, Waisfisz Q, Corthals S et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia 2006; 20: 1217–1220.

    Article  CAS  PubMed  Google Scholar 

  54. Kharazi S, Mead AJ, Mansour A, Hultquist A, Böiers C, Luc S et al. Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on FLT3-ITD-induced myeloproliferation. Blood 2011; 118: 3613–3621.

    Article  CAS  PubMed  Google Scholar 

  55. Li L, Bailey E, Greenblatt S, Huso D, Small D . Loss of the wild-type allele contributes to myeloid expansion and disease aggressiveness in FLT3/ITD knockin mice. Blood 2011; 118: 4935–4945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 2001; 61: 7233–7239.

    CAS  PubMed  Google Scholar 

  57. Gerhard Ehninger, Martin Bornhauser, Michael Kramer, Christoph Röllig, Hannes Wandt, Mathias Hanel et al. A strong immune effect by allogeneic stem cell transplantation may improve survival in AML patients with a high ratio of the FLT3-ITD mutation to the Wt-FLT3 allele: results from an analysis of 257 patients treated in the SAL AML-2003 Trial. Blood 2011; 118: 497.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Yamaguchi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Author contributions

SW and HY were the principal investigator and takes primary responsibility for the paper. SW, HY, TH, TR, KD and KI recruited the patients. SW, HY, IO, KT, TU, EM, SK, SI, TI, YS, TT, KA, TK, YM and FK performed the laboratory work for this study. SW, HY, KD and KI analyzed the data and wrote the paper. SW and HY contributed equally this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakita, S., Yamaguchi, H., Omori, I. et al. Mutations of the epigenetics-modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in de novo acute myeloid leukemia. Leukemia 27, 1044–1052 (2013). https://doi.org/10.1038/leu.2012.317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.317

Keywords

This article is cited by

Search

Quick links