Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

miR-433 is aberrantly expressed in myeloproliferative neoplasms and suppresses hematopoietic cell growth and differentiation

Abstract

BCR-ABL-negative myeloproliferative neoplasms (MPNs) are most frequently characterized by the JAK2V617F gain-of-function mutation, but several studies showed that JAK2V617F may not be the initiating event in MPN development, and recent publications indicate that additional alterations such as chromatin modification and microRNA (miRNA) deregulation may have an important role in MPN pathogenesis. Here we report that 61 miRNAs were significantly deregulated in CD34+ cells from MPN patients compared with controls (P<0.01). Global miRNA analysis also revealed that polycythemia vera (JAKV617F) and essential thrombocythemia (JAK2 wild type) patients have significantly different miRNA expression profiles from each other. Among the deregulated miRNAs, expression of miR-134, -214 and -433 was not affected by changes in JAK2 activity, suggesting that additional signaling pathways are responsible for the deregulation of these miRNAs in MPN. Despite its upregulation in MPN CD34+ and during normal erythropoiesis, both overexpression and knockdown studies suggest that miR-433 negatively regulates CD34+ proliferation and differentiation ex vivo. Its novel target GBP2 is downregulated during normal erythropoiesis and regulates proliferation and erythroid differentiation in TF-1 cells, indicating that miR-433 negatively regulates hematopoietic cell proliferation and erythropoiesis by directly targeting GBP2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dameshek W . Some speculations on the myeloproliferative syndromes. Blood 1951; 6: 372–375.

    CAS  PubMed  Google Scholar 

  2. Gilliland DG, Blanchard KL, Levy J, Perrin S, Bunn HF . Clonality in myeloproliferative disorders: analysis by means of the polymerase chain reaction. Proc Natl Acad Sci USA 1991; 88: 6848–6852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  PubMed  Google Scholar 

  4. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  5. Cario H, Goerttler PS, Steimle C, Levine RL, Pahl HL . The JAK2V617F mutation is acquired secondary to the predisposing alteration in familial polycythaemia vera. Br J Haematol 2005; 130: 800–801.

    Article  CAS  PubMed  Google Scholar 

  6. Bellanne-Chantelot C, Chaumarel I, Labopin M, Bellanger F, Barbu V, De Toma C et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood 2006; 108: 346–352.

    Article  CAS  PubMed  Google Scholar 

  7. Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 2007; 110: 375–379.

    Article  CAS  PubMed  Google Scholar 

  8. Thoennissen NH, Krug UO, Lee DH, Kawamata N, Iwanski GB, Lasho T et al. Prevalence and prognostic impact of allelic imbalances associated with leukemic transformation of Philadelphia chromosome-negative myeloproliferative neoplasms. Blood 2010; 115: 2882–2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shivdasani RA . MicroRNAs: regulators of gene expression and cell differentiation. Blood 2006; 108: 3646–3653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miska EA . How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 2005; 15: 563–568.

    Article  CAS  PubMed  Google Scholar 

  11. Calin GA, Croce CM . MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 2006; 66: 7390–7394.

    Article  CAS  PubMed  Google Scholar 

  12. Georgantas RW, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 2007; 104: 2750–2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bruchova H, Yoon D, Agarwal AM, Mendell J, Prchal JT . Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exper Hematol 2007; 35: 1657–1667.

    Article  CAS  Google Scholar 

  14. Bruchova H, Merkerova M, Prchal JT . Aberrant expression of microRNA in polycythemia vera. Haematologica 2008; 93: 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  15. Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 2007; 109: 4399–4405.

    Article  CAS  PubMed  Google Scholar 

  16. Guglielmelli P, Tozzi L, Bogani C, Iacobucci I, Ponziani V, Martinelli G et al. Overexpression of microRNA-16-2 contributes to the abnormal erythropoiesis in polycythemia vera. Blood 2011; 117: 6923–6927.

    Article  CAS  PubMed  Google Scholar 

  17. Gorbacheva VY, Lindner D, Sen GC, Vestal DJ . The interferon (IFN)-induced GTPase, mGBP-2. Role in IFN-gamma-induced murine fibroblast proliferation. J Biol Chem 2002; 277: 6080–6087.

    Article  CAS  PubMed  Google Scholar 

  18. Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci USA 2010; 107: 14229–14234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kong KY, Owens KS, Rogers JH, Mullenix J, Velu CS, Grimes HL et al. MIR-23A microRNA cluster inhibits B-cell development. Exper Hematol 2010; 38: 629–640, e621.

    Article  CAS  Google Scholar 

  20. Visone R, Rassenti LZ, Veronese A, Taccioli C, Costinean S, Aguda BD et al. Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood 2009; 114: 3872–3879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Slezak S, Jin P, Caruccio L, Ren J, Bennett M, Zia N et al. Gene and microRNA analysis of neutrophils from patients with polycythemia vera and essential thrombocytosis: down-regulation of micro RNA-1 and -133a. J Transl Med 2009; 7: 39.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T et al. MicroRNA 29b functions in acute myeloid leukemia. Blood 2009; 114: 5331–5341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exper Med 2008; 205: 585–594.

    Article  Google Scholar 

  24. Mullally A, Lane SW, Ball B, Megerdichian C, Okabe R, Al-Shahrour F et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell 2010; 17: 584–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo H, Zhang H, Zhang Z, Zhang X, Ning B, Guo J et al. Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exper Clin Cancer Res 2009; 28: 82.

    Article  Google Scholar 

  26. Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT . MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis 2012; 33: 1113–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Furlong F, Prencipe M, McGoldrick A, McGettigan P, Carney D, Doyle E et al. miR-433 overexpression attenuates the spindle assembly checkpoint response to paclitaxel. Breast Cancer Res 2010; 12: S11–S11.

    Article  Google Scholar 

  28. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 2011; 144: 296–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vestal DJ . The guanylate-binding proteins (GBPs): proinflammatory cytokine-induced members of the dynamin superfamily with unique GTPase activity. J Interferon Cytokine Res 2005; 25: 435–443.

    Article  CAS  PubMed  Google Scholar 

  30. Balasubramanian S, Fan M, Messmer-Blust AF, Yang CH, Trendel JA, Jeyaratnam JA et al. The interferon-gamma-induced GTPase, mGBP-2, inhibits tumor necrosis factor alpha (TNF-alpha) induction of matrix metalloproteinase-9 (MMP-9) by inhibiting NF-kappaB and Rac protein. J Biol Chem 2011; 286: 20054–20064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guglielmelli P, Tozzi L, Pancrazzi A, Bogani C, Antonioli E, Ponziani V et al. MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Exper Hematol 2007; 35: 1708–1718.

    Article  CAS  Google Scholar 

  32. Girardot M, Pecquet C, Boukour S, Knoops L, Ferrant A, Vainchenker W et al. miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. Blood 2010; 116: 437–445.

    Article  CAS  PubMed  Google Scholar 

  33. Hussein K, Dralle W, Theophile K, Kreipe H, Bock O . Megakaryocytic expression of miRNA 10a, 17-5p, 20a and 126 in Philadelphia chromosome-negative myeloproliferative neoplasm. Ann Hematol 2009; 88: 325–332.

    Article  CAS  PubMed  Google Scholar 

  34. Pulikkan JA, Peramangalam PS, Dengler V, Ho PA, Preudhomme C, Meshinchi S et al. C/EBPalpha regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations. Blood 2010; 116: 5638–5649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rice KL, Lin X, Wolniak K, Ebert BL, Berkofsky-Fessler W, Buzzai M et al. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms. Blood Cancer J 2011; 1: e40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bortoluzzi S, Bisognin A, Biasolo M, Guglielmelli P, Biamonte F, Norfo R et al. Characterisation and discovery of novel miRNAs and moRNAs in JAK2V617F mutated SET2 cells. Blood 2012; 119: e120–30.

    Article  CAS  PubMed  Google Scholar 

  37. Deepa SS, Dong LQ . APPL1: role in adiponectin signaling and beyond. Am J Physiol Endocrinol Metab 2009; 296: E22–36.

    Article  CAS  PubMed  Google Scholar 

  38. Guimaraes DP, Oliveira IM, de Moraes E, Paiva GR, Souza DM, Barnas C et al. Interferon-inducible guanylate binding protein (GBP)-2: a novel p53-regulated tumor marker in esophageal squamous cell carcinomas. Int J Cancer 2009; 124: 272–279.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Licht.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, X., Rice, K., Buzzai, M. et al. miR-433 is aberrantly expressed in myeloproliferative neoplasms and suppresses hematopoietic cell growth and differentiation. Leukemia 27, 344–352 (2013). https://doi.org/10.1038/leu.2012.224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.224

Keywords

This article is cited by

Search

Quick links