Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional Control and Signal Transduction

Evidence for a protective role of the STAT5 transcription factor against oxidative stress in human leukemic pre-B cells

Abstract

STAT5 transcription factors are involved in normal B lymphocyte development and in leukemogenesis. We show that the inhibition of STAT5A expression or activity in the NALM6, 697 and Reh leukemic pre-B cell lines, results in a higher spontaneous apoptosis and an increased FAS-induced cell death. However, the molecular mechanisms underlying the altered pre-B cell survival are unclear. We used a proteomic approach to identify proteins that are differentially regulated in cells expressing (NALM6Δ5A) or not a dominant negative form of STAT5A. Among the 14 proteins identified, six were involved in the control of the oxidative stress like glutathione (GSH) synthetase and DJ-1. Accordingly, we showed increased levels of reactive oxygen species (ROS) in NALM6Δ5A cells and suppression of the increased sensitivity to Fas-mediated apoptosis by the GSH tripeptide. Similar results were observed when NALM6 cells were treated with TAT-STAT5Δ5A fusion proteins or STAT5A shRNA. In addition, the 697 and Reh pre-B cells were found to share number of molecular changes observed in NALM6Δ5A cells including ROS generation, following inhibition of STAT5 expression or function. Our results point out to a hitherto undescribed link between STAT5 and oxidative stress and provide new insights into STAT5 functions and their roles in leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hennighausen L, Robinson GW . Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev 2008; 22: 711–721.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D et alStat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 1998; 93: 841–850.

    Article  CAS  PubMed  Google Scholar 

  3. Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX et alInactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 2004; 24: 8037–8047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Malin S, McManus S, Busslinger M . STAT5 in B cell development and leukemia. Curr Opin Immunol 2010; 22: 168–176.

    Article  CAS  PubMed  Google Scholar 

  5. Dai X, Chen Y, Di L, Podd A, Li G, Bunting KD et alStat5 is essential for early B cell development but not for B cell maturation and function. J Immunol 2007; 179: 1068–1079.

    Article  CAS  PubMed  Google Scholar 

  6. Hoelbl A, Kovacic B, Kerenyi MA, Simma O, Warsch W, Cui Y et alClarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood 2006; 107: 4898–4906.

    Article  CAS  PubMed  Google Scholar 

  7. Bertolino E, Reddy K, Medina KL, Parganas E, Ihle J, Singh H . Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat Immunol 2005; 6: 836–843.

    Article  CAS  PubMed  Google Scholar 

  8. Goetz CA, Harmon IR, O’Neil JJ, Burchill MA, Farrar MA . STAT5 activation underlies IL7 receptor-dependent B cell development. J Immunol 2004; 172: 4770–4778.

    Article  CAS  PubMed  Google Scholar 

  9. Malin S, McManus S, Cobaleda C, Novatchkova M, Delogu A, Bouillet P et alRole of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol 2010; 11: 171–179.

    Article  CAS  PubMed  Google Scholar 

  10. Scheeren FA, van Lent AU, Nagasawa M, Weijer K, Spits H, Legrand N et alThymic stromal lymphopoietin induces early human B-cell proliferation and differentiation. Eur J Immunol 2010; 40: 955–965.

    Article  CAS  PubMed  Google Scholar 

  11. Karras JG, Wang Z, Coniglio SJ, Frank DA, Rothstein TL . Antigen-receptor engagement in B cells induces nuclear expression of STAT5 and STAT6 proteins that bind and transactivate an IFN-gamma activation site. J Immunol 1996; 157: 39–47.

    CAS  PubMed  Google Scholar 

  12. Mahajan S, Vassilev A, Sun N, Ozer Z, Mao C, Uckun FM . Transcription factor STAT5A is a substrate of Bruton’s tyrosine kinase in B cells. J Biol Chem 2001; 276: 31216–31228.

    Article  CAS  PubMed  Google Scholar 

  13. Nyga R, Pecquet C, Harir N, Gu H, Dhennin-Duthille I, Regnier A et alActivated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter. Biochem J 2005; 390: 359–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santos SC, Lacronique V, Bouchaert I, Monni R, Bernard O, Gisselbrecht S et alConstitutively active STAT5 variants induce growth and survival of hematopoietic cells through a PI 3-kinase/Akt dependent pathway. Oncogene 2001; 20: 2080–2090.

    Article  CAS  PubMed  Google Scholar 

  15. Scheeren FA, Naspetti M, Diehl S, Schotte R, Nagasawa M, Wijnands E et alSTAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat Immunol 2005; 6: 303–313.

    Article  CAS  PubMed  Google Scholar 

  16. Paukku K, Silvennoinen O . STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev 2004; 15: 435–455.

    Article  CAS  PubMed  Google Scholar 

  17. Gouilleux-Gruart V, Gouilleux F, Desaint C, Claisse JF, Capiod JC, Delobel J et alSTAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 1996; 87: 1692–1697.

    CAS  PubMed  Google Scholar 

  18. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL . Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 1996; 13: 247–254.

    CAS  PubMed  Google Scholar 

  19. Weber-Nordt RM, Egen C, Wehinger J, Ludwig W, Gouilleux-Gruart V, Mertelsmann R et alConstitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood 1996; 88: 809–816.

    CAS  PubMed  Google Scholar 

  20. Moriggl R, Sexl V, Kenner L, Duntsch C, Stangl K, Gingras S et alStat5 tetramer formation is associated with leukemogenesis. Cancer Cell 2005; 7: 87–99.

    Article  CAS  PubMed  Google Scholar 

  21. Schwaller J, Parganas E, Wang D, Cain D, Aster JC, Williams IR et alStat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell 2000; 6: 693–704.

    Article  CAS  PubMed  Google Scholar 

  22. Lanvin O, Gouilleux F, Mullie C, Maziere C, Fuentes V, Bissac E et alInterleukin-7 induces apoptosis of 697 pre-B cells expressing dominant-negative forms of STAT5: evidence for caspase-dependent and -independent mechanisms. Oncogene 2004; 23: 3040–3047.

    Article  CAS  PubMed  Google Scholar 

  23. Hollis G, Evans R, Stafford-Hollis J, Korsmeyer S, McKearn J . Immunoglobulin lambda light-chain-related genes 14.1 and 16.1 are expressed in pre-B cells and may encode the human immunoglobulin omega light-chain protein. Proc Natl Acad Sci USA 1989; 86: 5552–5556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moriggl R, Gouilleux-Gruart V, Jahne R, Berchtold S, Gartmann C, Liu X et alDeletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol Cell Biol 1996; 16: 5691–5700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hurwitz R, Hozier J, LeBien T, Minowada J, Gajl-Peczalska K, Kubonishi I et alCharacterization of a leukemic cell line of the pre-B phenotype. Int J Cancer 1979; 23: 174–180.

    Article  CAS  PubMed  Google Scholar 

  26. Harir N, Pecquet C, Kerenyi M, Sonneck K, Kovacic B, Nyga R et alConstitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood 2007; 109: 1678–1686.

    Article  CAS  PubMed  Google Scholar 

  27. Rabilloud T, Brodard V, Peltre G, Righetti PG, Ettori C . Modified silver staining for immobilized pH gradients. Electrophoresis 1992; 13: 264–266.

    Article  CAS  PubMed  Google Scholar 

  28. Thebault S, Gilbert D, Hubert M, Drouot L, Machour N, Lange C et alOrderly pattern of development of the autoantibody response in (New Zealand White x BXSB)F1 lupus mice: characterization of target antigens and antigen spreading by two-dimensional gel electrophoresis and mass spectrometry. J Immunol 2002; 169: 4046–4053.

    Article  CAS  PubMed  Google Scholar 

  29. Thebault S, Deniel N, Marion R, Charlionet R, Tron F, Cosquer D et alProteomic analysis of glutamine-treated human intestinal epithelial HCT-8 cells under basal and inflammatory conditions. Proteomics 2006; 6: 3926–3937.

    Article  CAS  PubMed  Google Scholar 

  30. Charette SJ, Landry J . The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis. Ann NY Acad Sci 2000; 926: 126–131.

    Article  CAS  PubMed  Google Scholar 

  31. Charette SJ, Lavoie JN, Lambert H, Landry J . Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 2000; 20: 7602–7612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dinescu A, Cundari TR, Bhansali VS, Luo J-L, Anderson ME . Function of conserved residues of human glutathione synthetase: implications for the ATP-grasp enzymes. J Biol Chem 2004; 279: 22412–22421.

    Article  CAS  PubMed  Google Scholar 

  33. Taira T, Saito Y, Niki T, Iguchi-Ariga SMM, Takahashi K, Ariga H . DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 2004; 5: 213–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cerritelli SM, Crouch RJ., Ribonuclease H . The enzymes in eukaryotes. FEBS J 2009; 276: 1494–1505.

    Article  CAS  PubMed  Google Scholar 

  35. Treuner K, Okuyama A, Knippers R, Fackelmayer FO . Hyperphosphorylation of replication protein A middle subunit (RPA32) in apoptosis. Nucleic Acids Res 1999; 27: 1499–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mishra S, Murphy LC, Nyomba BL, Murphy LJ . Prohibitin: a potential target for new therapeutics. Trends Mol Med 2005; 11: 192–197.

    Article  CAS  PubMed  Google Scholar 

  37. Furuhata A, Kimura A, Shide K, Shimoda K, Murakami M, Ito H et alp27 deregulation by Skp2 overexpression induced by the JAK2V617 mutation. Biochem Biophys Res Commun 2009; 383: 411–416.

    Article  CAS  PubMed  Google Scholar 

  38. Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C . Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 2008; 12: 743–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo F, Sigua C, Bali P, George P, Fiskus W, Scuto A et alMechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 2005; 105: 1246–1255.

    Article  CAS  PubMed  Google Scholar 

  40. Townsend DM, Tew KD, Tapiero H . The importance of glutathione in human disease. Biomed Pharmacother 2003; 57: 145–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qian Y, Banerjee S, Grossman CE, Amidon W, Nagy G, Barcza M et alTransaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing. Biochem J 2008; 415: 123–134.

    Article  CAS  PubMed  Google Scholar 

  42. Lee TD, Yang H, Whang J, Lu SC . Cloning and characterization of the human glutathione synthetase 5′-flanking region. Biochem J 2005; 390: 521–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo S, Wharton W, Moseley P, Shi H . Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones 2007; 12: 245–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McCollum AK, Teneyck CJ, Sauer BM, Toft DO, Erlichman C . Up-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism. Cancer Res 2006; 66: 10967–10975.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou W, Freed CR . DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T alpha-synuclein toxicity. J Biol Chem 2005; 280: 43150–43158.

    Article  CAS  PubMed  Google Scholar 

  46. Koharyova M, Kolarova M . Oxidative stress and thioredoxin system. Gen Physiol Biophys 2008; 27: 71–84.

    CAS  PubMed  Google Scholar 

  47. Zhang J-g, Liu J-x, Li Z-h, Wang L-z, Jiang Y-d, Wang S-r . Dysfunction of endothelial NO system originated from homocysteine-induced aberrant methylation pattern in promoter region of DDAH2 gene. Chin Med J (Engl) 2007; 120: 2132–2137.

    Article  CAS  Google Scholar 

  48. Messmer UK, Ankarcrona M, Nicotera P, Brune B . p53 expression in nitric oxide-induced apoptosis. FEBS Lett 1994; 355: 23–26.

    Article  CAS  PubMed  Google Scholar 

  49. Morissette MC, Vachon-Beaudoin G, Parent J, Chakir J, Milot J . Increased p53 level, Bax/Bcl-x(L) ratio, and TRAIL receptor expression in human emphysema. Am J Respir Crit Care Med 2008; 178: 240–247.

    Article  CAS  PubMed  Google Scholar 

  50. Steckley D, Karajgikar M, Dale LB, Fuerth B, Swan P, Drummond-Main C et alPuma is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J Neurosci 2007; 27: 12989–12999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bertram C, Hass R . Cellular responses to reactive oxygen species-induced DNA damage and aging. Biol Chem 2008; 389: 211–220.

    Article  CAS  PubMed  Google Scholar 

  52. Eiberger W, Volkmer B, Amouroux R, Dherin C, Radicella JP, Epe B . Oxidative stress impairs the repair of oxidative DNA base modifications in human skin fibroblasts and melanoma cells. DNA Repair 2008; 7: 912–921.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Roland Charlionet (Inserm U519, Rouen, France) for his advice and the sharing of his proteomic analysis expertise with Eric Cholez. We also thank Ingrid Marcq for her technical assistance. This work was supported by Inserm, the ‘Conseil Régional de Picardie,’ by the ‘Association pour la Recherche sur le Cancer,’ by the ‘Fondation pour la Recherche Médicale’ and by the ‘Ligue contre le Cancer.’

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Lassoued or V Gouilleux-Gruart.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cholez, E., Debuysscher, V., Bourgeais, J. et al. Evidence for a protective role of the STAT5 transcription factor against oxidative stress in human leukemic pre-B cells. Leukemia 26, 2390–2397 (2012). https://doi.org/10.1038/leu.2012.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.112

Keywords

This article is cited by

Search

Quick links