Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Concise Review
  • Published:

Stem cell self-renewal: lessons from bone marrow, gut and iPS toward clinical applications

Abstract

The hematopoietic stem cell (HSC) is the prototype organ-regenerating stem cell (SC), and by far the most studied type of SC in the body. Currently, HSC-based therapy is the only routinely used SC therapy; however, advances in the field of embryonic SCs and induced pluripotent SCs may change this situation. Interest into in vitro generation of HSCs, including signals for HSC expansion and differentiation from these more primitive SCs, as well as advances in other organ-specific SCs, in particular the intestine, provide promising new applications for SC therapies. Here, we review the basic principles of different SC systems, and on the basis of the experience with HSC-based SC therapy, provide recommendations for clinical application of emerging SC technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Pera MF, Tam PP . Extrinsic regulation of pluripotent stem cells. Nature 2010; 465: 713–720.

    Article  CAS  PubMed  Google Scholar 

  2. Blank U, Karlsson G, Karlsson S . Signaling pathways governing stem-cell fate. Blood 2008; 111: 492–503.

    Article  CAS  PubMed  Google Scholar 

  3. Wilson A, Trumpp A . Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6: 93–106.

    Article  CAS  PubMed  Google Scholar 

  4. Issigonis M, Tulina N, de Cuevas M, Brawley C, Sandler L, Matunis E . JAK-STAT signal inhibition regulates competition in the Drosophila testis stem cell niche. Science 2009; 326: 153–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fellous TG, Islam S, Tadrous PJ, Elia G, Kocher HM, Bhattacharya S et al. Locating the stem cell niche and tracing hepatocyte lineages in human liver. Hepatology 2009; 49: 1655–1663.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Li L . Stem cell niche: microenvironment and beyond. J Biol Chem 2008; 283: 9499–9503.

    Article  CAS  PubMed  Google Scholar 

  7. Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J 2007; 26: 4744–4755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conover JC, Notti RQ . The neural stem cell niche. Cell Tissue Res 2008; 331: 211–224.

    Article  PubMed  Google Scholar 

  9. Nemeth MJ, Bodine DM . Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways. Cell Res 2007; 17: 746–758.

    Article  CAS  PubMed  Google Scholar 

  10. Yen TH, Wright NA . The gastrointestinal tract stem cell niche. Stem Cell Rev 2006; 2: 203–212.

    Article  CAS  PubMed  Google Scholar 

  11. Theise ND . The stem cell niche and tissue biology. Stem Cell Rev 2006; 2: 169–170.

    Article  PubMed  Google Scholar 

  12. Ninkovic J, Gotz M . Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Curr Opin Neurobiol 2007; 17: 338–344.

    Article  CAS  PubMed  Google Scholar 

  13. Grigoriadis AE, Kennedy M, Bozec A, Brunton F, Stenbeck G, Park IH et al. Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood 2010; 115: 2769–2776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakayama M . Homologous recombination in human iPS and ES cells for use in gene correction therapy. Drug Discov Today 2010; 15: 198–202.

    Article  CAS  PubMed  Google Scholar 

  15. Smith KP, Luong MX, Stein GS . Pluripotency: toward a gold standard for human ES and iPS cells. J Cell Physiol 2009; 220: 21–29.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  18. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  19. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318: 1920–1923.

    Article  CAS  PubMed  Google Scholar 

  20. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007; 25: 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  21. Passier R, van Laake LW, Mummery CL . Stem-cell-based therapy and lessons from the heart. Nature 2008; 453: 322–329.

    Article  CAS  PubMed  Google Scholar 

  22. Braam SR, Mummery CL . Human stem cell models for predictive cardiac safety pharmacology. Stem Cell Res 2010; 4: 155–156.

    Article  PubMed  Google Scholar 

  23. Freund C, Mummery CL . Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models. J Cell Biochem 2009; 107: 592–599.

    Article  CAS  PubMed  Google Scholar 

  24. Lebrin F, Srun S, Raymond K, Martin S, van den Brink S, Freitas C et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med 2010; 16: 420–428.

    Article  CAS  PubMed  Google Scholar 

  25. Stadtfeld M, Hochedlinger K . Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010; 24: 2239–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lemischka IR, Pritsker M . Alternative splicing increases complexity of stem cell transcriptome. Cell Cycle 2006; 5: 347–351.

    Article  CAS  PubMed  Google Scholar 

  27. MacArthur BD, Ma’ayan A, Lemischka IR . Toward stem cell systems biology: from molecules to networks and landscapes. Cold Spring Harb Symp Quant Biol 2008; 73: 211–215.

    Article  CAS  PubMed  Google Scholar 

  28. Macarthur BD, Ma’ayan A, Lemischka IR . Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 2009; 10: 672–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pritsker M, Doniger TT, Kramer LC, Westcot SE, Lemischka IR . Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci USA 2005; 102: 14290–14295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S . Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008; 322: 949–953.

    Article  CAS  PubMed  Google Scholar 

  31. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K . Induced pluripotent stem cells generated without viral integration. Science 2008; 322: 945–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324: 797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 2010; 7: 521–531.

    Article  CAS  PubMed  Google Scholar 

  34. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.

    Article  CAS  PubMed  Google Scholar 

  35. Kucia M, Wysoczynski M, Ratajczak J, Ratajczak MZ . Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tissue Res 2008; 331: 125–134.

    Article  CAS  PubMed  Google Scholar 

  36. Ratajczak MZ, Shin DM, Ratajczak J, Kucia M, Bartke A . A novel insight into aging: are there pluripotent very small embryonic-like stem cells (VSELs) in adult tissues overtime depleted in an Igf-1-dependent manner? Aging (Albany NY) 2010; 2: 875–883.

    Article  CAS  Google Scholar 

  37. Shin DM, Liu R, Klich I, Wu W, Ratajczak J, Kucia M et al. Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia 2010; 24: 1450–1461.

    Article  CAS  PubMed  Google Scholar 

  38. Barker N, van de Wetering M, Clevers H . The intestinal stem cell. Genes Dev 2008; 22: 1856–1864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van Dop WA, Heijmans J, Buller NV, Snoek SA, Rosekrans SL, Wassenberg EA et al. Loss of Indian hedgehog activates multiple aspects of a wound healing response in the mouse intestine. Gastroenterology 2010; 139: 1665–1676.

    Article  CAS  PubMed  Google Scholar 

  40. van Dop WA, Uhmann A, Wijgerde M, Sleddens-Linkels E, Heijmans J, Offerhaus GJ et al. Depletion of the colonic epithelial precursor cell compartment upon conditional activation of the hedgehog pathway. Gastroenterology 2009; 136: 2195–2203. e2191–e2197.

    Article  CAS  PubMed  Google Scholar 

  41. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459: 262–265.

    Article  CAS  PubMed  Google Scholar 

  42. Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 2010; 7: 11–14.

    Article  CAS  PubMed  Google Scholar 

  43. Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 2010; 7: 20–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dzierzak E . Opening act in a hematopoietic program. Blood 2009; 114: 229–230.

    Article  CAS  PubMed  Google Scholar 

  45. Medvinsky A, Dzierzak E . Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86: 897–906.

    Article  CAS  PubMed  Google Scholar 

  46. Cumano A, Dieterlen-Lievre F, Godin I . Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 1996; 86: 907–916.

    Article  CAS  PubMed  Google Scholar 

  47. de Bruijn MF, Ma X, Robin C, Ottersbach K, Sanchez MJ, Dzierzak E . Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 2002; 16: 673–683.

    Article  CAS  PubMed  Google Scholar 

  48. Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C . In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 2010; 464: 116–120.

    Article  CAS  PubMed  Google Scholar 

  49. Kissa K, Herbomel P . Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 2010; 464: 112–115.

    Article  CAS  PubMed  Google Scholar 

  50. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D . Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 2010; 464: 108–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA . Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009; 457: 887–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aiuti A . Advances in gene therapy for ADA-deficient SCID. Curr Opin Mol Ther 2002; 4: 515–522.

    CAS  PubMed  Google Scholar 

  53. Hacein-Bey S, Gross F, Nusbaum P, Yvon E, Fischer A, Cavazzana-Calvo M . Gene therapy of X-linked severe combined immunologic deficiency (SCID-X1). Pathol Biol (Paris) 2001; 49: 57–66.

    Article  CAS  Google Scholar 

  54. Kohn DB, Sadelain M, Glorioso JC . Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 2003; 3: 477–488.

    Article  CAS  PubMed  Google Scholar 

  55. Pike-Overzet K, van der Burg M, Wagemaker G, van Dongen JJ, Staal FJ . New insights and unresolved issues regarding insertional mutagenesis in X-linked SCID gene therapy. Mol Ther 2007; 15: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  56. Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M . 20 years of gene therapy for SCID. Nat Immunol 2010; 11: 457–460.

    Article  CAS  PubMed  Google Scholar 

  57. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  PubMed  Google Scholar 

  58. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.

    Article  CAS  PubMed  Google Scholar 

  59. Deichmann A, Hacein-Bey-Abina S, Schmidt M, Garrigue A, Brugman MH, Hu J et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest 2007; 117: 2225–2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118: 3143–3150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwarzwaelder K, Howe SJ, Schmidt M, Brugman MH, Deichmann A, Glimm H et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest 2007; 117: 2241–2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009; 119: 964–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009; 17: 1919–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Modlich U, Schambach A, Brugman MH, Wicke DC, Knoess S, Li Z et al. Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16. Leukemia 2008; 22: 1519–1528.

    Article  CAS  PubMed  Google Scholar 

  65. Staal FJ, Pike-Overzet K, Ng YY, van Dongen JJ . Sola dosis facit venenum. Leukemia in gene therapy trials: a question of vectors, inserts and dosage? Leukemia 2008; 22: 1849–1852.

    Article  CAS  PubMed  Google Scholar 

  66. Schofield R . The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4: 7–25.

    CAS  PubMed  Google Scholar 

  67. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008; 2: 274–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Luis TC, Naber BA, Fibbe WE, van Dongen JJ, Staal FJ . Wnt3a nonredundantly controls hematopoietic stem cell function and its deficiency results in complete absence of canonical Wnt signaling. Blood 2010; 116: 496–497.

    Article  CAS  PubMed  Google Scholar 

  69. Luis TC, Weerkamp F, Naber BA, Baert MR, de Haas EF, Nikolic T et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 2009; 113: 546–554.

    Article  CAS  PubMed  Google Scholar 

  70. Merchant A, Joseph G, Wang Q, Brennan S, Matsui W . Gli1 regulates the proliferation and differentiation of HSCs and myeloid progenitors. Blood 2010; 115: 2391–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID . Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 2010; 16: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Himburg HA, Muramoto GG, Daher P, Meadows SK, Russell JL, Doan P et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med 2010; 16: 475–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008; 371: 1579–1586.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amber Gunthardt for excellent organizational skills and Veruli Illustrations for assistance with visual art.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J T Staal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staal, F., Baum, C., Cowan, C. et al. Stem cell self-renewal: lessons from bone marrow, gut and iPS toward clinical applications. Leukemia 25, 1095–1102 (2011). https://doi.org/10.1038/leu.2011.52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.52

Keywords

This article is cited by

Search

Quick links