Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Parathyroid hormone as a marker for metabolic bone disease of prematurity

A Corrigendum to this article was published on 29 July 2015

Abstract

Objective:

To compare parathyroid hormone to alkaline phosphatase as a serologic marker for metabolic bone disease (MBD) in preterm infants.

Study Design:

An 18-month prospective observational study in neonates with birth weight <1250 g. Simultaneous serum parathyroid hormone (PTH), alkaline phosphatase (ALP), calcium (Ca) and phosphorus (P) were measured at scheduled intervals during hospitalization. At 6 weeks of age, MBD was evaluated using knee radiographs. Comparisons were analyzed using multivariate logistic regression, receiver operating characteristic (ROC) curves, χ2 and Student t-test.

Result:

Fourty-nine infants were included in the study: 7 with severe and 42 with mild MBD. Using ROC curves, at 660 U l−1 ALP had a sensitivity of 29% and specificity of 93% for severe MBD, while a cutoff point of 180 mg dl−1 gave PTH a sensitivity of 71% and specificity of 88%. Infants with severe bone disease had a lower birth weight, 21-day serum P, an increased use of glucocorticoids and caffeine, and more likely to have major neonatal morbidities.

Conclusion:

PTH is an early marker with better sensitivity than ALP in screening for MBD. At 3 weeks chronologic age, a PTH level >180 mg dl−1 or a P level <4.6 mg dl−1 yielded a sensitivity of 100% and specificity of 94% for severe MBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Lothe A, Sinn J, Stone M . Metabolic bone disease of prematurity and secondary hyperparathyroidism. J Paediatr Child Health 2011; 47 (8): 550–553.

    Article  Google Scholar 

  2. Chan GM, Armstrong C, Moyer-Mileur L, Hoff C . Growth and bone mineralization in children born prematurely. J Perinatol 2008; 28 (9): 619–623.

    Article  CAS  Google Scholar 

  3. Lucas-Herald A, Butler S, Mactier H, McDevitt H, Young D, Ahmed SF . Prevalence and characteristics of rib fractures in ex-preterm infants. Pediatrics 2012; 130 (6): 1116–1119.

    Article  Google Scholar 

  4. Viswanathan S, Khasawneh W, McNelis K, Dykstra C, Amstadt R, Super DM et al. Metabolic bone disease: a continued challenge in extremely low birth weight infants. JPEN J Parenter Enteral Nutr; e-pub ahead of print 2013; doi:10.11770148607113499590

  5. Rigo J, Pieltain C, Salle B, Senterre J . Enteral calcium, phosphate and vitamin D requirements and bone mineralization in preterm infants. Acta Paediatr 2007; 96 (7): 969–974.

    Article  Google Scholar 

  6. Harrison CM, Johnson K, McKechnie E . Osteopenia of prematurity: a national survey and review of practice. Acta Paediatr 2008; 97 (4): 407–413.

    Article  CAS  Google Scholar 

  7. Lucas A . Long-term programming effects of early nutrition — implications for the preterm infant. J Perinatol 2005; 25 (Suppl 2): S2–S6.

    Article  Google Scholar 

  8. Cooper C, Westlake S, Harvey N, Dennison E . Developmental Origins of Osteoporotic Fracture In: Goldberg G, Prentice A, Prentice A, Filteau S, Simondon K (eds) Breast-Feeding: Early Influences on Later Health. Springer: Netherlands, 2009, pp 217–236.

  9. Wood CL, Wood AM, Harker C, Embleton ND . Bone mineral density and osteoporosis after preterm birth: the role of early life factors and nutrition. Int J Endocrinol; 2013; e-pub ahead of print 2013; doi:10.1155/2013/902513.

    Article  Google Scholar 

  10. Abrams SA, Bhatia JJS, Abrams SA, Corkins MR, Ferranti SD, de, Golden NH et al. Calcium and Vitamin D Requirements of Enterally Fed Preterm Infants. Pediatrics 2013; 131 (5): e1676–e1683.

    Article  Google Scholar 

  11. Salle BL, David L, Chopard JP, Grafmeyer DC, Renaud H . Prevention of early neonatal hypocalcemia in low birth weight infants with continuous calcium infusion: effect on serum calcium, phosphorus, magnesium, and circulating immunoreactive parathyroid hormone and calcitonin. Pediatr Res 1977; 11 (12): 1180–1185.

    Article  CAS  Google Scholar 

  12. Pitkin RM, Cruikshank DP, Schauberger CW, Reynolds WA, Williams GA, Hargis GK . Fetal calcitropic hormones and neonatal calcium homeostasis. Pediatrics 1980; 66 (1): 77–82.

    CAS  PubMed  Google Scholar 

  13. Venkataraman PS, Blick KE, Fry HD, Rao RK . Postnatal changes in calcium-regulating hormones in very-low-birth-weight infants. Effect of early neonatal hypocalcemia and intravenous calcium infusion on serum parathyroid hormone and calcitonin homeostasis. Am J Dis Child 1985; 139 (9): 913–916.

    Article  CAS  Google Scholar 

  14. Rubin LP, Posillico JT, Anast CS, Brown EM . Circulating levels of biologically active and immunoreactive intact parathyroid hormone in human newborns. Pediatr Res 1991; 29 (2): 201–207.

    Article  CAS  Google Scholar 

  15. Cooper LJ, Anast CS . Circulating immunoreactive parathyroid hormone levels in premature infants and the response to calcium therapy. Acta Paediatr 1985; 74 (5): 669–673.

    Article  CAS  Google Scholar 

  16. Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD et al. PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res 2004; 19 (2): 235–244.

    Article  CAS  Google Scholar 

  17. Khosla S . Minireview: the OPG/RANKL/RANK system. Endocrinology 2001; 142 (12): 5050–5055.

    Article  CAS  Google Scholar 

  18. Swarthout JT, D’Alonzo RC, Selvamurugan N, Partridge NC . Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene 2002; 282 (1-2): 1–17.

    Article  CAS  Google Scholar 

  19. Bozzetti V, Tagliabue P . Metabolic bone disease in preterm newborn: an update on nutritional issues. Ital J Pediatr 2009; 35 (1): 20.

    Article  Google Scholar 

  20. Tinnion RJ, Embleton ND . How to use. alkaline phosphatase in neonatology. Arch Dis Child Educ Pract Ed 2012; 97 (4): 157–163.

    Article  Google Scholar 

  21. Golub EE, Harrison G, Taylor AG, Camper S, Shapiro IM . The role of alkaline phosphatase in cartilage mineralization. Bone Miner 1992; 17 (2): 273–278.

    Article  CAS  Google Scholar 

  22. Backström MC, Kouri T, Kuusela AL, Sievänen H, Koivisto AM, Ikonen RS et al. Bone isoenzyme of serum alkaline phosphatase and serum inorganic phosphate in metabolic bone disease of prematurity. Acta Paediatr 2000; 89 (7): 867–873.

    Article  Google Scholar 

  23. Faerk J, Peitersen B, Petersen S, Michaelsen KF . Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate. Arch Dis Child Fetal Neonatal Ed 2002; 87 (2): F133–F136.

    Article  CAS  Google Scholar 

  24. Visser F, Sprij AJ, Brus F . The validity of biochemical markers in metabolic bone disease in preterm infants: a systematic review. Acta Paediatr 2012; 101 (6): 562–568.

    Article  CAS  Google Scholar 

  25. Done SL . Fetal and neonatal bone health: update on bone growth and manifestations in health and disease. Pediatr Radiol 2012; 42 (Suppl 1): S158–S176.

    Article  Google Scholar 

  26. Koo WW, Tsang R . Bone mineralization in infants. Prog Food Nutr Sci 1984; 8 (3-4): 229–302.

    CAS  PubMed  Google Scholar 

  27. Shore RM, Chesney RW . Rickets: part II. Pediatr Radiol 2013; 43 (2): 152–172.

    Article  Google Scholar 

  28. Catache M, Leone CR . Role of plasma and urinary calcium and phosphorus measurements in early detection of phosphorus deficiency in very low birthweight infants. Acta Paediatr 2003; 92 (1): 76–80.

    Article  CAS  Google Scholar 

  29. Harrison CM, Gibson AT . Osteopenia in preterm infants. Arch Dis Child Fetal Neonatal Ed 2013; 98 (3): F272–F275.

    Article  Google Scholar 

  30. Vachharajani AJ, Mathur AM, Rao R . Metabolic bone disease of prematurity. NeoReviews 2009; 10 (8): e402–e411.

    Article  Google Scholar 

  31. Moreira A, Caskey M, Fonseca R, Malloy M, Geary C . Impact of providing vitamin A to the routine pulmonary care of extremely low birth weight infants. J Matern Fetal Neonatal Med 2012; 25 (1): 84–88.

    Article  CAS  Google Scholar 

  32. Moreira A, February M, Geary C . Parathyroid hormone levels in neonates with suspected osteopenia. J Paediatr Child Health 2013; 49 (1): E12–E16.

    Article  Google Scholar 

  33. Kraenzlin ME, Meier C . Parathyroid hormone analogues in the treatment of osteoporosis. Nat Rev Endocrinol 2011; 7 (11): 647–656.

    Article  CAS  Google Scholar 

  34. Buenzli PR, Pivonka P, Gardiner BS, Smith DW . Modelling the anabolic response of bone using a cell population model. J Theor Biol 2012; 307: 42–52.

    Article  CAS  Google Scholar 

  35. Redlich K, Görtz B, Hayer S, Zwerina J, Doerr N, Kostenuik P et al. Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am J Pathol 2004; 164 (2): 543–555.

    Article  CAS  Google Scholar 

  36. Garattini E, Margolis J, Heimer E, Felix A, Udenfriend S . Human placental alkaline phosphatase in liver and intestine. Proc Natl Acad Sci USA 1985; 82 (18): 6080–6084.

    Article  CAS  Google Scholar 

  37. Islam MT, Islam MN, Mollah AH, Hoque MA, Hossain MA, Nazir F et al. Status of liver enzymes in babies with perinatal asphyxia. Mymensingh Med J 2011; 20 (3): 446–449.

    CAS  PubMed  Google Scholar 

  38. Ferianec V, Linhartová L . Extreme elevation of placental alkaline phosphatase as a marker of preterm delivery, placental insufficiency and low birth weight. Neuro Endocrinol Lett 2011; 32 (2): 154–157.

    CAS  PubMed  Google Scholar 

  39. Van Hoof VO, De Broe ME . Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit Rev Clin Lab Sci 1994; 31 (3): 197–293.

    Article  CAS  Google Scholar 

  40. Mitchell SM, Rogers SP, Hicks PD, Hawthorne KM, Parker BR, Abrams SA . High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support. BMC Pediatr 2009; 9: 47.

    Article  Google Scholar 

  41. Hung Y-L, Chen P-C, Jeng S-F, Hsieh C-J, SS-F Peng, Yen R-F et al. Serial measurements of serum alkaline phosphatase for early prediction of osteopaenia in preterm infants. J Paediatr Child Health 2011; 47 (3): 134–139.

    Article  Google Scholar 

  42. Taylor JA, Richter M, Done S, Feldman KW . The utility of alkaline phosphatase measurement as a screening test for rickets in breast-fed infants and toddlers: a study from the puget sound pediatric research network. Clin Pediatr 2010; 49 (12): 1103–1110.

    Article  Google Scholar 

  43. Eelloo JA, Roberts SA, Emmerson AJB, Ward KA, Adams JE . Mughal MZ. Bone status of children aged 5-8 years, treated with dexamethasone for chronic lung disease of prematurity. Arch Dis Child Fetal Neonatal Ed 2008; 93 (3): F222–F224.

    Article  CAS  Google Scholar 

  44. Zhou Y, Guan XX, Zhu ZL, Guo J, Huang YC, Hou WW et al. Caffeine inhibits the viability and osteogenic differentiation of rat bone marrow-derived mesenchymal stromal cells. Br J Pharmacol 2010; 161 (7): 1542–1552.

    Article  CAS  Google Scholar 

  45. Rowe JC, Carey DE, Goetz CA, Adams ND, Horak E . Effect of high calcium and phosphorus intake on mineral retention in very low birth weight infants chronically treated with furosemide. J Pediatr Gastroenterol Nutr 1989; 9 (2): 206–211.

    Article  CAS  Google Scholar 

  46. Yao W, Dai W, Jiang JX, Lane NE . Glucocorticoids and osteocyte autophagy. Bone 2013; 54 (2): 279–284.

    Article  CAS  Google Scholar 

  47. Weinstein RS . Glucocorticoid-induced osteonecrosis. Endocrine 2012; 41 (2): 183–190.

    Article  CAS  Google Scholar 

  48. Shrivastava A, Lyon A, McIntosh N . The effect of dexamethasone on growth, mineral balance and bone mineralisation in preterm infants with chronic lung disease. Eur J Pediatr 2000; 159 (5): 380–384.

    Article  CAS  Google Scholar 

  49. Czech-Kowalska J, Pludowski P, Dobrzanska A, Kryskiewicz E, Karczmarewicz E, Gruszfeld D et al. Impact of vitamin D supplementation on markers of bone mineral metabolism in term infants. Bone 2012; 51 (4): 781–786.

    Article  CAS  Google Scholar 

  50. Koo WWW.K, Warren L . Calcium and bone health in infants. Neonatal Netw 2003; 22 (5): 23–37.

    Article  Google Scholar 

  51. Kovacs CS . Bone development in the fetus and neonate: role of the calciotropic hormones. Curr Osteoporos Rep 2011; 9 (4): 274–283.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the team of neonatal care providers at UTMB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Moreira.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, A., Swischuk, L., Malloy, M. et al. Parathyroid hormone as a marker for metabolic bone disease of prematurity. J Perinatol 34, 787–791 (2014). https://doi.org/10.1038/jp.2014.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2014.97

This article is cited by

Search

Quick links