Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MiR-101 regulates apoptosis of trophoblast HTR-8/SVneo cells by targeting endoplasmic reticulum (ER) protein 44 during preeclampsia

Abstract

To investigate a possible association between miR-101 and apoptosis of human trophoblast cells mediated by endoplasmic reticulum protein 44 (ERp44) in preeclampsia (PE), we explored the expression of miR-101 in PE placentas (n=30) compared with normotensive pregnant placentas (n=30) and the correlation between miR-101 and ERp44 was also analyzed. Furthermore, both the apoptotic rate of trophoblast cells and the ER stress-induced apoptotic proteins were assayed when the HTR-8/SVneo cells were treated with miR-101 mimics or inhibitors in vitro. We found a lower expression of miR-101 and an inverse correlation between miR-101 and ERp44 protein in PE placentas. Upregulation of miR-101 expression could inhibit trophoblast HTR-8/SVneo cell apoptosis and repress ER stress-induced apoptotic proteins by targeting ERp44 in vitro, whereas inhibition of miR-101 could induce HTR-8/SVneo cell apoptosis. Our findings indicated that overexpression of miR-101 could downregulate ERp44 and suppress apoptosis in trophoblast cells during PE. Therefore, loss of miR-101 expression could contribute to ER stress-induced trophoblast cell apoptosis by targeting ERp44.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Powe CE, Levine RJ, Karumanchi SA . Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation 2011; 123 (24): 2856–2869.

    Article  Google Scholar 

  2. Askelund KJ, Chamley LW . Trophoblast deportation part I: review of the evidence demonstrating trophoblast shedding and deportation during human pregnancy. Placenta 2011; 32 (10): 716–723.

    Article  CAS  Google Scholar 

  3. Sacks GP, Studena K, Sargent K, Redman CW . Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 1998; 179 (1): 80–86.

    Article  CAS  Google Scholar 

  4. Saftlas AF, Beydoun H, Triche E . Immunogenetic determinants of preeclampsia and related pregnancy disorders: a systematic review. Obstet Gynecol 2005; 106 (1): 162–172.

    Article  Google Scholar 

  5. Conrad KP, Benyo DF . Placental cytokines and the pathogenesis of preeclampsia. Am J Reprod Immunol 1997; 37 (3): 240–249.

    Article  CAS  Google Scholar 

  6. Granger JP, Alexander BT, Llinas MT, Bennett WA, Khalil RA . Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction. Hypertension 2001; 38 (3 Pt 2): 718–722.

    Article  CAS  Google Scholar 

  7. Rana S, Karumanchi SA, Levine RJ, Venkatesha S, Rauh-Hain JA, Tamez H et al. Sequential changes in antiangiogenic factors in early pregnancy and risk of developing preeclampsia. Hypertension 2007; 50 (1): 137–142.

    Article  CAS  Google Scholar 

  8. Lam C, Lim KH, Karumanchi SA . Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension 2005; 46 (5): 1077–1085.

    Article  CAS  Google Scholar 

  9. Noris M, Todeschini M, Cassis P, Pasta F, Cappellini A, Bonazzola S et al. L-arginine depletion in preeclampsia orients nitric oxide synthase toward oxidant species. Hypertension 2004; 43 (3): 614–622.

    Article  CAS  Google Scholar 

  10. Walsh SW . Maternal-placental interactions of oxidative stress and antioxidants in preeclampsia. Semin Reprod Endocrinol 1998; 16 (1): 93–104.

    Article  CAS  Google Scholar 

  11. Bartha JL, Romero-Carmona R, Torrejon-Cardoso R, Comino-Delgado R . Insulin, insulin-like growth factor-1, and insulin resistance in women with pregnancy-induced hypertension. Am J Obstet Gynecol 2002; 187 (3): 735–740.

    Article  CAS  Google Scholar 

  12. Jain A, Olovsson M, Burton GJ, Yung HW . Endothelin-1 induces endoplasmic reticulum stress by activating the PLC-IP(3) pathway: implications for placental pathophysiology in preeclampsia. Am J Pathol 2012; 180 (6): 2309–2320.

    Article  CAS  Google Scholar 

  13. Burton GJ, Yung HW . Endoplasmic reticulum stress in the pathogenesis of early-onset pre-eclampsia. Pregnancy Hypertens 2011; 1 (1-2): 72–78.

    Article  Google Scholar 

  14. Yung HW, Calabrese S, Hynx D, Hemmings BA, Cetin I, Charnock-Jones DS et al. Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am J Pathol 2008; 173 (2): 451–462.

    Article  CAS  Google Scholar 

  15. Lin WC, Chuang YC, Chang YS, Lai MD, Teng YN, Su IJ et al. Endoplasmic reticulum stress stimulates p53 expression through NF-kappaB activation. PLoS ONE 2012; 7 (7): e39120.

    Article  CAS  Google Scholar 

  16. Burton GJ, Jauniaux E . Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig 2004; 11 (6): 342–352.

    Article  CAS  Google Scholar 

  17. Sun LZ, Yang NN, De W, Xiao YS . Proteomic analysis of proteins differentially expressed in preeclamptic trophoblasts. Gynecol Obstet Invest 2007; 64 (1): 17–23.

    Article  CAS  Google Scholar 

  18. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116 (2): 281–297.

    Article  CAS  Google Scholar 

  19. Small EM, Olson EN . Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469 (7330): 336–342.

    Article  CAS  Google Scholar 

  20. Fineberg SK, Kosik KS, Davidson BL . MicroRNAs potentiate neural development. Neuron 2009; 64 (3): 303–309.

    Article  CAS  Google Scholar 

  21. Weidhaas J . Using microRNAs to understand cancer biology. Lancet Oncol 2010; 11 (2): 106–107.

    Article  Google Scholar 

  22. Forbes K, Farrokhnia F, Aplin JD, Westwood M . Dicer-dependent miRNAs provide an endogenous restraint on cytotrophoblast proliferation. Placenta 2012; 33 (7): 581–585.

    Article  CAS  Google Scholar 

  23. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137 (6): 1005–1017.

    Article  CAS  Google Scholar 

  24. Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW . Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 2008; 451 (7178): 600.

    Article  CAS  Google Scholar 

  25. Geeleher P, Huang SR, Gamazon ER, Golden A, Seoighe C . The regulatory effect of miRNAs is a heritable genetic trait in humans. BMC Genomics 2012; 13: 383.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Follert P, Cremer H, Beclin C . MicroRNAs in brain development and function: a matter of flexibility and stability. Front Mol Neurosci 2014; 7: 5.

    Article  Google Scholar 

  27. Bouyssou JM, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM . Regulation of microRNAs in Cancer Metastasis. Biochim Biophys Acta 2014; 1845 (2): 255–265.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fernandez-Hernando C, Baldan A . MicroRNAs and cardiovascular disease. Curr Genet Med Rep 2013; 1 (1): 30–38.

    Article  Google Scholar 

  29. Zhu XM, Han T, Sargent IL, Yin GW, Yao YQ . Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol 2009; 200 (6): 661.

    Article  Google Scholar 

  30. Kitroser E, Pomeranz M, Epstein SG, Fishman A, Drucker L, Sadeh-Mestechkin D et al. The involvement of eukaryotic translation initiation factor 4E in extravillous trophoblast cell function. Placenta 2012; 33 (9): 717–724.

    Article  CAS  Google Scholar 

  31. Liu S, Li Q, Na Q, Liu C . Endothelin-1 stimulates human trophoblast cell migration through Cdc42 activation. Placenta 2012; 33 (9): 712–716.

    Article  CAS  Google Scholar 

  32. Graham CH, Hawley TS, Hawley RG, MacDougall JR, Kerbel RS, Khoo N et al. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res 1993; 206 (2): 204–211.

    Article  CAS  Google Scholar 

  33. Trobaugh DW, Gardner CL, Sun C, Haddow AD, Wang E, Chapnik E et al. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature 2014; 506 (7487): 245–248.

    Article  CAS  Google Scholar 

  34. Su L, Liu R, Cheng W, Zhu M, Li X, Zhao S et al. Expression patterns of microRNAs in porcine endometrium and their potential roles in embryo implantation and Placentation. PLoS ONE 2014; 9 (2): e87867.

    Article  Google Scholar 

  35. Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol 2007; 196 (3): 261.

    Article  Google Scholar 

  36. Muralimanoharan S, Maloyan A, Mele J, Guo C, Myatt LG, Myatt L . MIR-210 modulates mitochondrial respiration in placenta with preeclampsia. Placenta 2012; 33 (10): 816–823.

    Article  CAS  Google Scholar 

  37. Dai Y, Qiu Z, Diao Z, Shen L, Xue P, Sun H et al. MicroRNA-155 inhibits proliferation and migration of human extravillous trophoblast derived HTR-8/SVneo cells via down-regulating cyclin D1. Placenta 2012; 33 (10): 824–829.

    Article  CAS  Google Scholar 

  38. Zhang Y, Diao Z, Su L, Sun H, Li R, Cui H et al. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am J Obstet Gynecol 2010; 202 (5): 461–466.

    Article  Google Scholar 

  39. Leung AK, Sharp PA . MicroRNA functions in stress responses. Mol Cell 2010; 40 (2): 205–215.

    Article  CAS  Google Scholar 

  40. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN . Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007; 316 (5824): 575–579.

    Article  CAS  Google Scholar 

  41. Flynt AS, Thatcher EJ, Burkewitz K, Li N, Liu Y, Patton JG . miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos. J Cell Biol 2009; 185 (1): 115–127.

    Article  CAS  Google Scholar 

  42. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM . bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003; 113 (1): 25–36.

    Article  CAS  Google Scholar 

  43. Whitley GS, Dash PR, Ayling LJ, Prefumo F, Thilaganathan B, Cartwright JE . Increased apoptosis in first trimester extravillous trophoblasts from pregnancies at higher risk of developing preeclampsia. Am J Pathol 2007; 170 (6): 1903–1909.

    Article  CAS  Google Scholar 

  44. Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM . Villous trophoblast apoptosis is elevated and restricted to cytotrophoblasts in pregnancies complicated by preeclampsia, IUGR, or preeclampsia with IUGR. Placenta 2012; 33 (5): 352–359.

    Article  CAS  Google Scholar 

  45. Anelli T, Alessio M, Mezghrani A, Simmen T, Talamo F, Bachi A et al. ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO J 2002; 21 (4): 835–844.

    Article  CAS  Google Scholar 

  46. Moenner M, Pluquet O, Bouchecareilh M, Chevet E . Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 2007; 67 (22): 10631–10634.

    Article  CAS  Google Scholar 

  47. Hamada K, Miyata T, Mayanagi K, Hirota J, Mikoshiba K . Two-state conformational changes in inositol 1,4,5-trisphosphate receptor regulated by calcium. J Biol Chem 2002; 277 (24): 21115–21118.

    Article  CAS  Google Scholar 

  48. Choe CU, Ehrlich BE . The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork. Sci STKE 2006; 2006 (363): e15.

    Article  Google Scholar 

  49. Marks AR . Intracellular calcium-release channels: regulators of cell life and death. Am J Physiol 1997; 272 (2 Pt 2): H597–H605.

    CAS  PubMed  Google Scholar 

  50. Peter ME . Targeting of mRNAs by multiple miRNAs: the next step. Oncogene 2010; 29 (15): 2161–2164.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by The National Natural Science Foundation of China, Grant Nos 81070511 and 81270710.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Sun.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Jiang, Z., Yu, X. et al. MiR-101 regulates apoptosis of trophoblast HTR-8/SVneo cells by targeting endoplasmic reticulum (ER) protein 44 during preeclampsia. J Hum Hypertens 28, 610–616 (2014). https://doi.org/10.1038/jhh.2014.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2014.35

This article is cited by

Search

Quick links