Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

The potential role of leptin in the vascular remodeling associated with obesity

Abstract

Background/objectives:

Extracellular matrix (ECM) participates in the vascular remodeling associated with obesity. We investigated the effects of leptin on the production of ECM components in primary cultured vascular smooth muscle cells (VSMCs) and whether leptin could be a mediator of obesity-induced vascular remodeling.

Methods:

The effects of leptin (100 ng ml−1) on ECM components and superoxide anion production (O2.−) were evaluated in presence or absence of the antioxidant melatonin (103 mmol l−1) or the inhibitor of phosphatidylinositol 3′-kinase (PI3K), LY294002 (2 × 104 mmol l−1) in VSMCs from adult rats in order to explore the role of both oxidative stress and the participation of PI3K/Akt pathway in the effects of leptin. ECM components and O2.− were quantified in the aortic media of male Wistar rats fed a high-fat diet (HFD; 33.5% fat), or a standard diet (CT; 3.5% fat) for 6 weeks.

Results:

In VSMCs, leptin enhanced gene and protein levels of collagen I, fibronectin, transforming growth factor (TGF)-β and connective tissue growth factor (CTGF) but did not change those of collagen III and galectin-3. Leptin also increased O2.− and Akt phosphorylation in VSMCs. These effects were prevented by the presence of either melatonin or LY294002, except O2.− production in the case of PI3K inhibition. The increase in body weight in HFD rats was accompanied by aorta thickening due to an increase in media area. The aortic fibrosis observed in HFD rats was associated with high levels of leptin, collagen type I, fibronectin, TGF-β, CTGF, phosphorylated Akt and O2.−. Aortic leptin levels were positively correlated with total collagen, collagen I, TGF-β and CTGF levels. No differences were observed in the levels of collagen III, elastin or galectin-3 between both the groups.

Conclusions:

Leptin could participate in the vascular remodeling and stiffness associated with obesity by ECM production in VSMCs through the activation of oxidative stress–PI3K/Akt pathway and the production of the profibrotic factors TGF-β and CTGF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001; 37: 1236–1241.

    Article  CAS  PubMed  Google Scholar 

  2. Laurent S, Boutouyrie P, Lacolley P . Structural and genetic bases of arterial stiffnes. Hypertension 2005; 45: 1050–1055.

    Article  CAS  Google Scholar 

  3. Redon J, Cifkova R, Laurent S, Nilsson P, Narkiewicz K, Erdine S et al. Mechanisms of hypertension in the cardiometabolic syndrome. J Hypertens 2009; 27: 441–451.

    Article  CAS  Google Scholar 

  4. Lu P, Takai K, Weaver VM, Werb Z . Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011; 3: a005058.

    Article  PubMed  Google Scholar 

  5. Miana M, de Las Heras N, Rodriguez C, Sanz-Rosa D, Martin-Fernandez B, Mezzano S et al. Effect of eplerenone on hypertension-associated renal damage in rats: potential role of peroxisome proliferator activated receptor gamma (PPAR-γ). J Physiol Pharmacol 2011; 62: 87–94.

    CAS  Google Scholar 

  6. Rossoni LV, Oliveira RA, Caffaro RR, Miana M, Sanz-Rosa D, Koike MK et al. Cardiac benefits of exercise training in aging spontaneously hypertensive rats. J Hypertens 2011; 29: 2349–2358.

    Article  CAS  Google Scholar 

  7. Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J . TGF-beta signaling in vascular fibrosis. Cardiovasc Res 2007; 74: 196–206.

    Article  CAS  Google Scholar 

  8. Oemar BS, Werner A, Garnier JM, Do DD, Godoy N, Nauck M et al. Human connective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation 1997; 95: 831–839.

    Article  CAS  Google Scholar 

  9. Chen MM, Lam A, Abraham JA, Schreiner GF, Joly AH . CTGF expression is induced by TGF- beta in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol 2000; 32: 1805–1819.

    Article  CAS  Google Scholar 

  10. Finckenberg P, Lassila M, Inkinen K, Pere AK, Krogerus L, Lindgren L et al. Cyclosporine induces myocardial connective tissue growth factor in spontaneously hypertensive rats on high-sodium diet. Transplantation 2001; 71: 951–958.

    Article  CAS  Google Scholar 

  11. Rupérez M, Lorenzo O, Blanco-Colio LM, Esteban V, Egido J, Ruiz-Ortega M . Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation 2003; 108: 1499–1505.

    Article  Google Scholar 

  12. Yu M, Zheng Y, Sun HX, Yu DJ . Inhibitory effects of enalaprilat on rat cardiac fibroblast proliferation via ROS/P38MAPK/TGF-β1 signaling pathway. Molecules 2012; 17: 2738–2751.

    Article  CAS  PubMed  Google Scholar 

  13. Papaspyridonos M, McNeill E, de Bono JP, Smith A, Burnand KG, Channon KM et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol 2008; 28: 433–440.

    Article  CAS  PubMed  Google Scholar 

  14. Lopez-Andrès N, Rossignol P, Iraqi W, Fay R, Nuée J, Ghio S et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail 2012; 14: 74–81.

    Article  PubMed  Google Scholar 

  15. van Kimmenade RR, Januzzi JL Jr., Ellinor PT, Sharma UC, Bakker JA, Low AF et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol 2006; 48: 1217–1224.

    Article  CAS  PubMed  Google Scholar 

  16. Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez-Martinez E, de Boer RA et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol 2013; 33: 67–75.

    Article  CAS  PubMed  Google Scholar 

  17. Schulze PC, Kratzsch J . Leptin as a new diagnostic tool in chronic heart failure. Clin Chim Acta 2005; 362: 1–11.

    Article  CAS  Google Scholar 

  18. Sweeney G . Leptin signalling. Cell Signal 2002; 14: 655–663.

    Article  CAS  Google Scholar 

  19. Ciccone M, Vettor R, Pannacciulli N, Minenna A, Bellacicco M, Rizzon P et al. Plasma leptin is independently associated with the intima-media thickness of the common carotid artery. Int J Obes Relat Metab Disord 2001; 25: 805–810.

    Article  CAS  Google Scholar 

  20. Bodary PF, Gu S, Shen Y, Hasty AH, Buckler JM, Eitzman DT . Recombinant leptin promotes atherosclerosis and thrombosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2005; 25: e119–e122.

    Article  CAS  Google Scholar 

  21. Bodary PF, Shen Y, Ohman M, Bahrou KL, Vargas FB, Cudney SS et al. Leptin regulates neointima formation after arterial injury through mechanisms independent of blood pressure and the leptin receptor/STAT3 signaling pathways involved in energy balance. Arterioscler Thromb Vasc Biol 2007; 27: 70–76.

    Article  CAS  Google Scholar 

  22. Schafer K, Halle M, Goeschen C, Dellas C, Pynn M, Loskutoff DJ et al. Leptin promotes vascular remodeling and neointimal growth in mice. Arterioscler Thromb Vasc Biol 2004; 24: 112–117.

    Article  Google Scholar 

  23. Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzmán M, Brownlee M . Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem 2001; 276: 25096–25100.

    Article  CAS  PubMed  Google Scholar 

  24. Han DC, Isono M, Chen S, Casaretto A, Hong SW, Wolf G et al. Leptin stimulates type I collagen production in db/db mesangial cells: glucose uptake and TGF-beta type II receptor expression. Kidney Int 2001; 59: 1315–1323.

    Article  CAS  Google Scholar 

  25. Madani S, De Girolamo S, Muñoz DM, Li RK, Sweeney G . Direct effects of leptin on size and extracellular matrix components of human pediatric ventricular myocytes. Cardiovasc Res 2006; 69: 716–725.

    Article  CAS  Google Scholar 

  26. Marra F, Navari N, Vivoli E, Galastri S, Provenzano A . Modulation of liver fibrosis by adipokines. Dig Dis 2011; 29: 371–376.

    Article  Google Scholar 

  27. Frühbeck G . Intracellular signalling pathways activated by leptin. Biochem J 2006; 393 : 7–20.

    Article  PubMed  Google Scholar 

  28. Donato J Jr., Frazao R, Elias CF . The PI3K signaling pathway mediates the biological effects of leptin. Arq Bras Endocrinol Metabol 2010; 54: 591–602.

    Article  Google Scholar 

  29. Zhou Y, Jia X, Wang G, Wang X, Liu J . PI-3 K/AKT and ERK signaling pathways mediate leptin-induced inhibition of PPARgamma gene expression in primary rat hepatic stellate cells. Mol Cell Biochem 2009; 325: 131–139.

    Article  CAS  Google Scholar 

  30. Martínez-Martínez E, Jurado-López R, Valero-Muñoz M, Bartolomé MV, Ballesteros S, Luaces M et al. Leptin induces cardiac fibrosis through galectin-3, mTOR and oxidative stress. Potential role in obesity. J Hypertens (in press).

  31. Alvarez G, Visitacion BM, Miana M, Jurado-Lopez R, Martin R, Zuluaga P et al. The effects of adiponectin and leptin on human endothelial cell proliferation: a live-cell study. J Vasc Res 2012; 49: 111–122.

    Article  CAS  Google Scholar 

  32. Maeso R, Rodrigo E, Munoz-Garcia R, Navarro-Cid J, Ruilope LM, Cachofeiro V et al. Chronic treatment with losartan ameliorates vascular dysfunction induced by aging in spontaneously hypertensive rats. J Hypertens 1998; 16: 665–672.

    Article  CAS  Google Scholar 

  33. de las Heras N, Aragoncillo P, Maeso R, Vazquez-Perez S, Navarro-Cid J, DeGasparo M et al. AT(1) receptor antagonism reduces endothelial dysfunction and intimal thickening in atherosclerotic rabbits. Hypertension 1999; 34: 969–975.

    Article  CAS  Google Scholar 

  34. Ram E, Vishne T, Maayan R, Lerner I, Weizman A, Dreznik Z et al. The relationship between BMI, plasma leptin, insulin and proinsulin before and after laparoscopic adjustable gastric banding. Obes Surg 2005; 15: 1456–1462.

    Article  Google Scholar 

  35. Terra X, Quintero Y, Auguet T, Porras JA, Hernandez M, Sabench F et al. FABP 4 is associated with inflammatory markers and metabolic syndrome in morbidly obese women. Eur J Endocrinol 2011; 164: 539–547.

    Article  CAS  PubMed  Google Scholar 

  36. Testelmans D, Tamisier R, Barone-Rochette G, Baguet JP, Roux-Lombard P, Pepin JL et al. Profile of circulating cytokines: impact of OSA, obesity and acute cardiovascular events. Cytokine 2013; 62: 210–216.

    Article  CAS  PubMed  Google Scholar 

  37. Wolf G, Ziyadeh FN . Leptin and renal fibrosis. Contrib Nephrol 2006; 151: 175–183.

    Article  PubMed  Google Scholar 

  38. Fernández-Alfonso MS, Gil-Ortega M, García-Prieto CF, Aranguez I, Ruiz-Gayo M, Somoza B . Mechanisms of perivascular adipose tissue dysfunction in obesity. Int J Endocrinol 2013; 2013: 402053.

    Article  PubMed  Google Scholar 

  39. Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG . Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int. J Obes Relat Metab Disord 2004; 28 : S58–S65.

    Article  CAS  Google Scholar 

  40. Diez J . Arterial stiffness and ECM. Adv Cardiol 2007; 44: 76–95.

    Article  CAS  Google Scholar 

  41. Lacolley P, Labat C, Pujol A, Delcayre C, Benetos A, Safar M . Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats: effects of eplerenone. Circulation 2002; 106: 2848–2853.

    Article  CAS  Google Scholar 

  42. Sutton-Tyrrell K, Newman A, Simonsick EM, Havlik R, Pahor M, Lakatta E et al. Aortic stiffness is associated with visceral adiposity in older adults enrolled in the study of health, aging, and body composition. Hypertension 2001; 38: 429–433.

    Article  CAS  PubMed  Google Scholar 

  43. Singhal A, Farooqi IS, Cole TJ, O'Rahilly S, Fewtrell M, Kattenhorn M et al. Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? Circulation 2002; 106: 1919–1924.

    Article  CAS  Google Scholar 

  44. de las Heras N, Martin-Fernandez B, Miana M, Ballesteros S, Oubina MP, Lopez-Farre AJ et al. The protective effect of irbesartan in rats fed a high fat diet is associated with modification of leptin-adiponectin imbalance. J Hypertens Suppl 2009; 27: S37–S41.

    Article  CAS  Google Scholar 

  45. Li L, Dong H, Song E, Xu X, Liu L, Song Y . Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling. Chem Biol Interact 2013; 209C: 56–67.

    Google Scholar 

  46. Urtasun R, Lopategi A, George J, Leung TM, Lu Y, Wang X et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin alpha(V)beta(3) engagement and PI3K/pAkt/NFkappaB signaling. Hepatology 2012; 55: 594–608.

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Ohmori K, Mizukawa M, Yoshida J, Zeng Y, Zhang L et al. Differential impact of atorvastatin vs pravastatin on progressive insulin resistance and left ventricular diastolic dysfunction in a rat model of type II diabetes. Circ J 2007; 71: 144–152.

    Article  CAS  Google Scholar 

  48. Yu Y, Ohmori K, Chen Y, Sato C, Kiyomoto H . Differential impact of atorvastatin vs pravastatin on progressive insulin resistance and left ventricular diastolic dysfunction in a rat model of type II diabetes. Effects of pravastatin on progression of glucose intolerance and cardiovascular remodeling in a type II diabetes model. J Am Coll Cardiol 2004; 44: 904–913.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Elodie Rousseau for her technical help. This work was supported by grants from Fondo de Investigaciones Sanitarias (P12/01729) and Ministerio de Economía y Competitividad (SAF2012/36400). EM-M, MM, RJ-L, MVB, NL-A, VC and MS are members of the Red de Investigación Cardiovascular (RIC) (RD12/0042/0033 and RD12/0042/0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Cachofeiro.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Martínez, E., Miana, M., Jurado-López, R. et al. The potential role of leptin in the vascular remodeling associated with obesity. Int J Obes 38, 1565–1572 (2014). https://doi.org/10.1038/ijo.2014.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2014.37

Keywords

This article is cited by

Search

Quick links