Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Review
  • Published:

Physical activity assessment tools for use in overweight and obese children

Abstract

The prevalence of excess weight in children and adults worldwide has increased rapidly in the last 25 years. Obesity is positively associated with increased risk for many health issues such as type 2 diabetes, cardiovascular disease and psychosocial problems. This review focuses on child populations, as it is known that the sedentary behaviors of overweight/obese youth often endure into adulthood. Assessment of physical activity (PA), among other factors such as diet and socio-economic status, is important in understanding weight variation and in designing interventions. This review highlights common subjective and objective PA assessment tools, the validity of these methods and acceptable ways of collecting and interpreting PA data. The aim is to provide an update on PA assessment in overweight/obese children, highlighting current knowledge and any gaps in the literature, in order to facilitate the use of PA assessments and interventions by health-care professionals as well as suggest future research in this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wang Y, Monteiro C, Popkin BM . Trends of obesity and underweight in older children and adolescents in the United States, Brazil, China, and Russia. Am J Clin Nutr 2002; 75: 971–977.

    Article  CAS  PubMed  Google Scholar 

  2. Lobstein T, Baur L, Uauy R . TaskForce IIO. Obesity in children and young people: a crisis in public health. Obes Rev 2004; 5 (Suppl 1): 4–104.

    Article  PubMed  Google Scholar 

  3. Janssen I, Katzmarzyk PT, Boyce WF, Vereecken C, Mulvihill C, Roberts C et al. Comparison of overweight and obesity prevalence in school-aged youth from 34 countries and their relationships with physical activity and dietary patterns. Obes Rev 2005; 6: 123–132.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Lobstein T . Worldwide trends in childhood overweight and obesity. Int J Ped Obes 2006; 1: 11–25.

    Article  Google Scholar 

  5. WHO. Global strategy on diet, phyiscal activity and health. WHO Publications: Switzerland, 2004.

  6. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C . Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol 2004; 24: e13–e18.

    CAS  PubMed  Google Scholar 

  7. Balagopal PB, de Ferranti SD, Cook S, Daniels SR, Gidding SS, Hayman LL et al. Nontraditional risk factors and biomarkers for cardiovascular disease: mechanistic, research, and clinical considerations for youth: a scientific statement from the American Heart Association. Circulation 2011; 123: 2749–2769.

    Article  PubMed  Google Scholar 

  8. Steinberger J, Daniels SR, Eckel RH, Hayman L, Lustig RH, McCrindle B et al. Progress and challenges in metabolic syndrome in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2009; 119: 628–647.

    Article  PubMed  Google Scholar 

  9. Shields M . Nutrition: Findings from the Canadian Community Health Survey 2004.

  10. Adamo KB, Prince SA, Tricco AC, Connor-Gorber S, Tremblay M . A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: a systematic review. Int J Ped Obes 2009; 4: 2–27.

    Article  Google Scholar 

  11. Roberts KC, Shields M, de Groh M, Aziz A, Gilbert JA . Overweight and obesity in children and adolescents: results from the 2009 to 2011 Canadian Health Measures Survey. Health Rep 2012; 23: 37–41.

    PubMed  Google Scholar 

  12. Tremblay MS, Warburton DE, Janssen I, Paterson DH, Latimer AE, Rhodes RE et al. New Canadian physical activity guidelines. Appl Physiol Nutr Metab 2011; 361: 47–58.

    Article  Google Scholar 

  13. Corder K, Ekelund U, Steele RM, Wareham NJ, Brage S . Assessment of physical activity in youth. J Appl Physiol 2008; 105: 977–987.

    Article  PubMed  Google Scholar 

  14. Robertson W, Stewart-Brown S, Wilcock E, Oldfield M, Thorogood M . Utility of accelerometers to measure physical activity in children attending an obesity treatment intervention. J Obes 2011; 2011: 398918.

    Article  PubMed  Google Scholar 

  15. Strath SJ, Pfeiffer KA, Whitt-Glover MC . Accelerometer use with children, older adults, and adults with functional limitations. Med Sci Sports Exerc 2012; 44 (1 Suppl 1): S77–S85.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Organization WH. Global recommendations on physical activity for health In. WHO Press: Switzerland, 2010.

  17. Physical Activity. Healthy People 2020. In. USA 2013.

  18. Bull FC, Groups. EW . Physical activity guidelines in the U.K.: Review and recommendations. School of Sport, Exercise, and Health Sciences: Loughborough University: UK, 2010.

    Google Scholar 

  19. Okely AD, Salmon J, Trost SG, Hinkley T . Discussion paper for the development of physical activity recommendations for children under 5 years. Department of Health and Ageing Australian Government: Canberra, ACT, 2008.

  20. Ekelund U, Tomkinson G, Armstrong N . What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br J Sports Med 2011; 45: 859–865.

    Article  PubMed  Google Scholar 

  21. Spittaels H, Van Cauwenberghe E, Verbestel V, De Meester F, Van Dyck D, Verloigne M et al. Objectively measured sedentary time and physical activity time across the lifespan: a cross-sectional study in four age groups. Int J Behav Nutr Phys Act 2012; 9: 149.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M . Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 2008; 40: 181–188.

    Article  PubMed  Google Scholar 

  23. Muller AM, Khoo S, Lambert R . Review of Physical Activity Prevalence of Asian School-Age Children and Adolescents. Asia Pac J Public Health 2013; 25: 227–238.

    Article  PubMed  Google Scholar 

  24. Floriani V, Kennedy C . Promotion of physical activity in children. Curr Opin Pediatr 2008; 20: 90–95.

    Article  PubMed  Google Scholar 

  25. Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS . Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep 2011; 22: 15–23.

    PubMed  Google Scholar 

  26. Knuth AG, Hallal PC . Temporal trends in physical activity: a systematic review. J Phys Act Health 2009; 6: 548–559.

    Article  PubMed  Google Scholar 

  27. Colley RC, Garriguet D, Adamo KB, Carson V, Janssen I, Timmons BW et al. Physical activity and sedentary behavior during the early years in Canada: a cross-sectional study. Int J Behav Nutr Phys Act 2013; 10: 54.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pate RR, Mitchell JA, Byun W, Dowda M . Sedentary behaviour in youth. Br J Sports Med 2011; 45: 906–913.

    Article  PubMed  Google Scholar 

  29. Loprinzi PD, Cardinal BJ . Measuring children’s physical activity and sedentary behaviors. J Exerc Sci Fit 2011; 9: 15–23.

    Article  Google Scholar 

  30. Gordon-Larsen P, Nelson MC, Popkin BM . Longitudinal physical activity and sedentary behavior trends: adolescence to adulthood. Am J Prev Med 2004; 27: 277–283.

    Article  PubMed  Google Scholar 

  31. Tudor-Locke C, Craig CL, Beets MW, Belton S, Cardon GM, Duncan S et al. How many steps/day are enough? for children and adolescents. Int J Behav Nutr Phys Act 2011; 8: 78.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nader PR, Bradley RH, Houts RM, McRitchie SL, O’Brien M . Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA 2008; 300: 295–305.

    Article  CAS  PubMed  Google Scholar 

  33. Tudor-Locke C, Craig CL, Cameron C, Griffiths JM . Canadian children’s and youth’s pedometer-determined steps/day, parent-reported TV watching time, and overweight/obesity: the CANPLAY Surveillance Study. Int J Behav Nutr Phys Act 2011; 8: 66.

    Article  PubMed  PubMed Central  Google Scholar 

  34. De Vries SI, Van Hirtum HW, Bakker I, Hopman-Rock M, Hirasing RA, Van Mechelen W . Validity and reproducibility of motion sensors in youth: a systematic update. Med Sci Sports Exerc 2009; 41: 818–827.

    Article  PubMed  Google Scholar 

  35. Sternfeld B, Goldman-Rosas L . A systematic approach to selecting an appropriate measure of self-reported physical activity or sedentary behavior. J Phys Act Health 2012; 9 (Suppl 1): S19–S28.

    Article  PubMed  Google Scholar 

  36. Chinapaw MJ, Mokkink LB, van Poppel MN, van Mechelen W, Terwee CB . Physical activity questionnaires for youth: a systematic review of measurement properties. Sports Med 2010; 40: 539–563.

    Article  PubMed  Google Scholar 

  37. Janz KF, Lutuchy EM, Wenthe P, Levy SM . Measuring activity in children and adolescents using self-report: PAQ-C and PAQ-A. Med Sci Sports Exerc 2008; 40: 767–772.

    Article  PubMed  Google Scholar 

  38. Bland JM, Altman DG. . Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307–310.

    Article  CAS  PubMed  Google Scholar 

  39. Krouwer JS, Monti KL . A simple, graphical method to evaluate laboratory assays. Eur J Clin Chem Clin Biochem 1995; 33: 525–527.

    CAS  PubMed  Google Scholar 

  40. Sikorski C, Riedel C, Luppa M, Schulze B, Werner P, Konig HH et al. Perception of overweight and obesity from different angles: a qualitative study. Scand J Public Health 2012; 40: 271–277.

    Article  PubMed  Google Scholar 

  41. Reichert FF, Baptista Menezes AM, Wells JC, Carvalho Dumith S, Hallal PC . Physical activity as a predictor of adolescent body fatness: a systematic review. Sports Med 2009; 39: 279–294.

    Article  PubMed  Google Scholar 

  42. Mouratidou T, Mesana MI, Manios Y, Koletzko B, Chinapaw MJ, De Bourdeaudhuij I et al. Assessment tools of energy balance-related behaviours used in European obesity prevention strategies: review of studies during preschool. Obes Rev 2012; 13 (Suppl 1): 42–55.

    Article  PubMed  Google Scholar 

  43. Treuth MS, Schmitz K, Catellier DJ, McMurray RG, Murray DM, Almeida MJ et al. Defining accelerometer thresholds for activity intensities in adolescent girls. Med Sci Sports Exerc 2004; 36: 1259–1266.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Baquet G, Stratton G, Van Praagh E, Berthoin S . Improving physical activity assessment in prepubertal children with high-frequency accelerometry monitoring: a methodological issue. Prev Med 2007; 44: 143–147.

    Article  PubMed  Google Scholar 

  45. Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC . Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc 2000; 32: 426–431.

    Article  CAS  PubMed  Google Scholar 

  46. Butte NF, Ekelund U, Westerterp KR . Assessing physical activity using wearable monitors: measures of physical activity. Med Sci Sports Exerc 2012; 44 (1 Suppl 1): S5–12.

    Article  PubMed  Google Scholar 

  47. Heil DP, Brage S, Rothney MP . Modeling physical activity outcomes from wearable monitors. Med Sci Sports Exerc 2012; 44 (1 Suppl 1): S50–S60.

    Article  PubMed  Google Scholar 

  48. Kang M, Marshall SJ, Barreira TV, Lee JO . Effect of pedometer-based physical activity interventions: a meta-analysis. Res Q Exerc Sport 2009; 80: 648–655.

    PubMed  Google Scholar 

  49. Lubans DR, Morgan PJ, Tudor-Locke C . A systematic review of studies using pedometers to promote physical activity among youth. Prev Med 2009; 48: 307–315.

    Article  PubMed  Google Scholar 

  50. Mitre N, Lanningham-Foster L, Foster R, Levine JA . Pedometer accuracy for children: can we recommend them for our obese population? Pediatrics 2009; 123: e127–e131.

    Article  PubMed  Google Scholar 

  51. Chen KY, Janz KF, Zhu W, Brychta RJ . Redefining the roles of sensors in objective physical activity monitoring. Med Sci Sports Exerc 2012; 44 (1 Suppl 1): S13–S23.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mathie MJ, Coster AC, Lovell NH, Celler BG . Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas 2004; 25: R1–20.

    Article  PubMed  Google Scholar 

  53. Intille SS, Lester J, Sallis JF, Duncan G . New horizons in sensor development. Med Sci Sports Exerc 2012; 44 (1 Suppl 1): S24–S31.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cardon G, De Bourdeaudhuij I . Comparison of pedometer and accelerometer measures of physical activity in preschool children. Ped Exerc Sci 2007; 19: 205–214.

    Article  Google Scholar 

  55. Corder K, Brage S, Ekelund U . Accelerometers and pedometers: methodology and clinical application. Curr Opin Clin Nutr Metab Care 2007; 10: 597–603.

    Article  PubMed  Google Scholar 

  56. Rowlands AV . Accelerometer assessment of physical activity in children: an update. Ped Exerc Sci 2007; 19: 252–266.

    Article  Google Scholar 

  57. Freedson P, Pober D, Janz KF . Calibration of accelerometer output for children. Med Sci Sports Exerc 2005; 37 (11 Suppl): S523–S530.

    Article  PubMed  Google Scholar 

  58. Vanhelst J, Beghin L, Duhamel A, Bergman P, Sjotrom M, Gottrand F . Comparison of uniaxial and triaxial accelerometry in the assessment of physical activity among adolescents under free-living conditions: the HELENA study. BMC Med Res Methodol 2012; 12: 26.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Welk GJ, McClain J, Ainsworth BE . Protocols for evaluating equivalency of accelerometry-based activity monitors. Med Sci Sports Exerc 2012; 44 (1 Suppl 1): S39–S49.

    Article  PubMed  Google Scholar 

  60. Hikihara Y TS, Ohkawara K, Ishikawa-Takata K, Tabata I . Validation and comparison of 3 accelerometers for measuring physical activity intensity during nonlocomotive activities and locomotive movements. J Phys Act Health 2012; 9: 935–943.

    Article  PubMed  Google Scholar 

  61. Ozemek C CH, Strath SJ, Byun W, Kaminsky LA . Estimating relative intensity using individualized accelerometer cutpoints: the importance of fitness level. BMC Med Res Methodol 2013; 13: 53.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bassett DR Jr, Rowlands A, Trost SG . Calibration and validation of wearable monitors. Med Sci Sports Exerc 2012; 44 (1 Suppl 1): S32–S38.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Crouter SE CK, Bassett DR Jr . A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol 2006; 100: 1324–1331.

    PubMed  Google Scholar 

  64. Staudenmayer J PD, Crouter S, Bassett D, Freedson P . An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 2009; 107: 1300–1307.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lifson N, Gordon GB, Mcclintock R . Measurement of total carbon dioxide production by means of D2O18. J Appl Physiol 1955; 7: 704–710.

    Article  CAS  PubMed  Google Scholar 

  66. Schoeller DA, van Santen E . Measurement of energy expenditure in humans by doubly labeled water method. J Appl Physiol 1982; 53: 955–959.

    Article  CAS  PubMed  Google Scholar 

  67. Westerterp KR . Assessment of physical activity: a critical appraisal. Eur J Appl Physiol 2009; 105: 823–828.

    Article  PubMed  Google Scholar 

  68. Melanson EL Jr, Freedson PS . Physical activity assessment: a review of methods. Crit Rev Food Sci Nutr 1996; 36: 385–396.

    Article  PubMed  Google Scholar 

  69. Levine JA . Nonexercise activity thermogenesis-liberating the life-force. J Intern Med 2007; 262: 273–287.

    Article  CAS  PubMed  Google Scholar 

  70. Levine JA . Nonexercise activity thermogenesis (NEAT): environment and biology. Am J Physiol Endocrinol Metab 2004; 286: E675–E685.

    Article  CAS  PubMed  Google Scholar 

  71. Westerterp KR . Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects. Front Physiol 2013; 4: 90.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bonomi AG, Westerterp KR . Advances in physical activity monitoring and lifestyle interventions in obesity: a review. Int J Obes (Lond) 2012; 36: 167–177.

    Article  CAS  Google Scholar 

  73. Mahon AD, Woodruff ME, Horn MP, Marjerrison AD, Cole AS . Effect of stimulant medication use by children with ADHD on heart rate and perceived exertion. Adapt Phys Activ Q 2012; 29: 151–160.

    Article  PubMed  Google Scholar 

  74. Jansen K, Vandeput S, Milosevic M, Ceulemans B, Van Huffel S, Brown L et al. Autonomic effects of refractory epilepsy on heart rate variability in children: influence of intermittent vagus nerve stimulation. Dev Med Child Neurol 2011; 53: 1143–1149.

    Article  PubMed  Google Scholar 

  75. Temple JL, Dewey AM, Briatico LN . Effects of acute caffeine administration on adolescents. Exp Clin Psychopharmacol 2010; 18: 510–520.

    Article  CAS  PubMed  Google Scholar 

  76. Baltrenas P, Buckus R . Research and assessment of safety distance of TV electromagnetic fields. Int J Occup Saf Ergon 2011; 17: 33–39.

    Article  PubMed  Google Scholar 

  77. Ridley K, Ainsworth BE, Olds TS . Development of a compendium of energy expenditures for youth. Int J Occup Saf Ergon 2008; 5: 45.

    Google Scholar 

  78. Ainsworth BE, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 1993; 25: 71–80.

    Article  CAS  PubMed  Google Scholar 

  79. Terrier P, Schutz Y . How useful is satellite positioning system (GPS) to track gait parameters? A review. J Neuroeng Rehab 2005; 2: 28.

    Article  Google Scholar 

  80. Maddison R, Jiang Y, Vander Hoorn S, Exeter D, Mhurchu CN, Dorey E . Describing patterns of physical activity in adolescents using global positioning systems and accelerometry. Ped Exerc Sci 2010; 22: 392–407.

    Article  Google Scholar 

  81. Rainham DG, Bates CJ, Blanchard CM, Dummer TJ, Kirk SF, Shearer CL . Spatial classification of youth physical activity patterns. Am J Prev Med 2012; 42: e87–e96.

    Article  PubMed  Google Scholar 

  82. Southward EF, Page AS, Wheeler BW, Cooper AR . Contribution of the school journey to daily physical activity in children aged 11-12 years. Am J Prev Med 2012; 43: 201–204.

    Article  PubMed  Google Scholar 

  83. Oreskovic NM, Blossom J, Field AE, Chiang SR, Winickoff JP, Kleinman RE . Combining global positioning system and accelerometer data to determine the locations of physical activity in children. Geospat Health 2012; 6: 263–272.

    Article  PubMed  Google Scholar 

  84. Goldfield GS, Mallory R, Prud’homme D, Adamo KB . Gender differences in response to a physical activity intervention in overweight and obese children. J Phys Act Health 2008; 5: 592–606.

    Article  PubMed  Google Scholar 

  85. Ni Mhurchu C, Maddison R, Jiang Y, Jull A, Prapavessis H, Rodgers A . Couch potatoes to jumping beans: a pilot study of the effect of active video games on physical activity in children. Int J Behav Nutr Phys Act 2008; 5: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Esliger DW, Copeland JL, Barnes JD, Tremblay MS . Standardizing and Optimizing the Use of Accelerometer Data for Free-Living Physical Activity Monitoring. J Phys Act Health 2005; 2: 366–383.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T J Hazell.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellery, C., Weiler, H. & Hazell, T. Physical activity assessment tools for use in overweight and obese children. Int J Obes 38, 1–10 (2014). https://doi.org/10.1038/ijo.2013.125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2013.125

Keywords

Search

Quick links