Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

rAAV-mediated overexpression of sox9, TGF-β and IGF-I in minipig bone marrow aspirates to enhance the chondrogenic processes for cartilage repair

Abstract

Administration of therapeutic gene sequences coding for chondrogenic and chondroreparative factors in bone marrow aspirates using the clinically adapted recombinant adeno-associated virus (rAAV) vector may provide convenient, single-step approaches to improve cartilage repair. Here, we tested the ability of distinct rAAV constructs coding for the potent SOX9, transforming growth factor beta (TGF-β) and insulin-like growth factor I (IGF-I) candidate factors to modify marrow aspirates from minipigs to offer a preclinical large animal model system adapted for a translational evaluation of cartilage repair upon transplantation in sites of injury. Our results demonstrate that high, prolonged rAAV gene transfer efficiencies were achieved in the aspirates (up to 100% for at least 21 days) allowing to produce elevated amounts of the transcription factor SOX9 that led to increased levels of matrix synthesis and chondrogenic differentiation and of the growth factors TGF-β and IGF-I that both increased cell proliferation, matrix synthesis and chondrogenic differentiation (although to a lower level than SOX9) compared with control (lacZ) condition. Remarkably, application of the candidate SOX9 vector also led to reduced levels of hypertrophic differentiation in the aspirates, possibly by modulating the β-catenin, Indian hedgehog and PTHrP pathways. The present findings show the benefits of modifying minipig marrow concentrates via rAAV gene transfer as a future means to develop practical strategies to promote cartilage repair in a large animal model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Buckwalter JA . Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 1998; 28: 192–202.

    Article  CAS  PubMed  Google Scholar 

  2. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L . Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889–895.

    Article  CAS  PubMed  Google Scholar 

  3. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R . Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 2003; 85: 185–192.

    Article  PubMed  Google Scholar 

  4. Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 2004; 86: 455–464.

    Article  PubMed  Google Scholar 

  5. Tibesku CO, Szuwart T, Kleffner TO, Schlegel PM, Jahn UR, Van Aken H et al. Hyaline cartilage degenerates after autologous osteochondral transplantation. J Orthop Res 2004; 22: 1210–1214.

    Article  CAS  PubMed  Google Scholar 

  6. Dewan AK, Gibson MA, Elisseeff JH, Trice ME . Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. Biomed Res Int 2014; 2014: 272481.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Orth P, Rey-Rico A, Venkatesan JK, Madry H, Cucchiarini M . Current perspectives in stem cell research for knee cartilage repair. Stem Cells Cloning 2014; 7: 1–17.

    PubMed  PubMed Central  Google Scholar 

  8. Cucchiarini M, Madry H, Guilak F, Saris DB, Stoddart MJ, Koon Wong M et al. A vision on the future of articular cartilage repair. Eur Cell Mater 2014; 27: 12–16.

    Article  CAS  PubMed  Google Scholar 

  9. Slynarski K, Deszczynski J, Karpinski J . Fresh bone marrow and periosteum transplantation for cartilage defects of the knee. Transplant Proc 2006; 38: 318–319.

    Article  CAS  PubMed  Google Scholar 

  10. Gigante A, Cecconi S, Calcagno S, Busilacchi A, Enea D . Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Tech 2012; 1: e175–e180.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim JD, Lee GW, Jung GH, Kim CK, Kim T, Park JH et al. Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. Eur J Orthop Surg Traumatol 2014; 24: 1505–1511.

    Article  PubMed  Google Scholar 

  12. Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F et al. Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater 2013; 25: 248–267.

    Article  CAS  PubMed  Google Scholar 

  13. Frisch J, Venkatesan JK, Rey-Rico A, Madry H, Cucchiarini M . Current progress in stem cell-based gene therapy for articular cartilage repair. Curr Stem Cell Res Ther 2015; 10: 121–131.

    Article  CAS  PubMed  Google Scholar 

  14. Pascher A, Palmer GD, Steinert A, Oligino T, Gouze E, Gouze JN et al. Gene delivery to cartilage defects using coagulated bone marrow aspirate. Gene Therapy 2004; 11: 133–141.

    Article  CAS  PubMed  Google Scholar 

  15. Ivkovic A, Pascher A, Hudetz D, Maticic D, Jelic M, Dickinson S et al. Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Therapy 2010; 17: 779–789.

    Article  CAS  PubMed  Google Scholar 

  16. Sieker JT, Kunz M, Weissenberger M, Gilbert F, Frey S, Rudert M et al. Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates. Osteoarthritis Cartilage 2015; 23: 433–442.

    Article  CAS  PubMed  Google Scholar 

  17. Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Madry H, Cucchiarini M . Determination of effective rAAV-mediated gene transfer conditions to support chondrogenic differentiation processes in human primary bone marrow aspirates. Gene Therapy 2015; 22: 50–57.

    Article  CAS  PubMed  Google Scholar 

  18. Fisher MB, Belkin NS, Milby AH, Henning EA, Bostrom M, Kim M et al. Cartilage repair and subchondral bone remodeling in response to focal lesions in a mini-pig model: implications for tissue engineering. Tissue Eng Part A 2015; 21: 850–860.

    Article  CAS  PubMed  Google Scholar 

  19. Venkatesan JK, Ekici M, Madry H, Schmitt G, Kohn D, Cucchiarini M . SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell Res Ther 2012; 3: 22–36.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Frisch J, Venkatesan JK, Rey-Rico A, Schmitt G, Madry H, Cucchiarini M . Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2014; 5: 103–114.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Frisch J, Venkatesan JK, Rey-Rico A, Schmitt G, Madry H, Cucchiarini M . Determination of the chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells genetically modified to overexpress transforming growth factor-beta via recombinant adeno-associated viral vectors. Hum Gene Ther 2014; 25: 1050–1060.

    Article  CAS  PubMed  Google Scholar 

  22. Tsuchiya H, Kitoh H, Sugiura F, Ishiguro N . Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2003; 301: 338–343.

    Article  CAS  PubMed  Google Scholar 

  23. Palmer GD, Steinert A, Pascher A, Gouze E, Gouze JN, Betz O et al. Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol Ther 2005; 12: 219–228.

    Article  CAS  PubMed  Google Scholar 

  24. Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR . Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Therapy 2007; 14: 804–813.

    Article  CAS  PubMed  Google Scholar 

  25. Osborn KD, Trippel SB, Mankin HJ . Growth factor stimulation of adult articular cartilage. J Orthop Res 1989; 7: 35–42.

    Article  CAS  PubMed  Google Scholar 

  26. Trippel SB . Growth factor actions on articular cartilage. J Rheumatol Suppl 1995; 43: 129–132.

    CAS  PubMed  Google Scholar 

  27. Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM et al. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 1998; 80: 1745–1757.

    Article  CAS  PubMed  Google Scholar 

  28. Cao L, Yang F, Liu G, Yu D, Li H, Fan Q et al. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 2011; 32: 3910–3920.

    Article  CAS  PubMed  Google Scholar 

  29. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU . In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998; 238: 265–272.

    Article  CAS  PubMed  Google Scholar 

  30. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF . Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 1998; 4: 415–428.

    Article  CAS  PubMed  Google Scholar 

  31. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  32. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B . Sox9 is required for cartilage formation. Nat Genet 1999; 22: 85–89.

    Article  CAS  PubMed  Google Scholar 

  33. DeLise AM, Fischer L, Tuan RS . Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 2000; 8: 309–334.

    Article  CAS  PubMed  Google Scholar 

  34. de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W . Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 2000; 19: 389–394.

    Article  CAS  PubMed  Google Scholar 

  35. Okazaki K, Sandell LJ . Extracellular matrix gene regulation. Clin Orthop Relat Res 2004: S123–S128.

  36. Lefebvre V, Smits P . Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today 2005; 75: 200–212.

    Article  CAS  PubMed  Google Scholar 

  37. Goldring MB, Tsuchimochi K, Ijiri K . The control of chondrogenesis. J Cell Biochem 2006; 97: 33–44.

    Article  CAS  PubMed  Google Scholar 

  38. Akiyama H . Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol 2008; 18: 213–219.

    Article  CAS  PubMed  Google Scholar 

  39. Quintana L, zur Nieden NI, Semino CE . Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng Part B Rev 2009; 15: 29–41.

    Article  CAS  PubMed  Google Scholar 

  40. Frith J, Genever P . Transcriptional control of mesenchymal stem cell differentiation. Transfus Med Hemother 2008; 35: 216–227.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Demoor M, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, Fabre H et al. Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta 2014; 1840: 2414–2440.

    Article  CAS  PubMed  Google Scholar 

  42. Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 2004; 18: 1072–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Topol L, Chen W, Song H, Day TF, Yang Y . Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. J Biol Chem 2009; 284: 3323–3333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Amano K, Hata K, Sugita A, Takigawa Y, Ono K, Wakabayashi M et al. Sox9 family members negatively regulate maturation and calcification of chondrocytes through up-regulation of parathyroid hormone-related protein. Mol Biol Cell 2009; 20: 4541–4551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hattori T, Muller C, Gebhard S, Bauer E, Pausch F, Schlund B et al. SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development 2010; 137: 901–911.

    Article  CAS  PubMed  Google Scholar 

  46. Barry F, Boynton RE, Liu B, Murphy JM . Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 2001; 268: 189–200.

    Article  CAS  PubMed  Google Scholar 

  47. Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ et al. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 2003; 278: 41227–41236.

    Article  CAS  PubMed  Google Scholar 

  48. Steinert AF, Palmer GD, Pilapil C, Noth U, Evans CH, Ghivizzani SC . Enhanced in vitro chondrogenesis of primary mesenchymal stem cells by combined gene transfer. Tissue Eng Part A 2009; 15: 1127–1139.

    Article  CAS  PubMed  Google Scholar 

  49. Lee JM, Im GI . PTHrP isoforms have differing effect on chondrogenic differentiation and hypertrophy of mesenchymal stem cells. Biochem Biophys Res Commun 2012; 421: 819–824.

    Article  CAS  PubMed  Google Scholar 

  50. Koch H, Jadlowiec JA, Campbell PG . Insulin-like growth factor-I induces early osteoblast gene expression in human mesenchymal stem cells. Stem Cells Dev 2005; 14: 621–631.

    Article  CAS  PubMed  Google Scholar 

  51. Ronziere MC, Perrier E, Mallein-Gerin F, Freyria AM . Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Biomed Mater Eng 2010; 20: 145–158.

    CAS  PubMed  Google Scholar 

  52. Shi S, Wang C, Acton AJ, Eckert GJ, Trippel SB . Role of sox9 in growth factor regulation of articular chondrocytes. J Cell Biochem 2015; 116: 1391–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shapiro F, Koide S, Glimcher MJ . Cell origin and differentiation in the repair of of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993; 75: 532–553.

    Article  CAS  PubMed  Google Scholar 

  54. Samulski RJ, Chang LS, Shenk T . A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 1987; 61: 3096–3101.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Samulski RJ, Chang LS, Shenk T . Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989; 63: 3822–3828.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cucchiarini M, Ekici M, Schetting S, Kohn D, Madry H . Metabolic activities and chondrogenic differentiation of human mesenchymal stem cells following recombinant adeno-associated virus-mediated gene transfer and overexpression of fibroblast growth factor 2. Tissue Eng Part A 2011; 17: 1921–1933.

    Article  CAS  PubMed  Google Scholar 

  57. Cucchiarini M, Orth P, Madry H . Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J Mol Med (Berl) 2013; 91: 625–636.

    Article  CAS  Google Scholar 

  58. Cucchiarini M, Madry H . Overexpression of human IGF-Ivia direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Therapy 2014; 21: 811–819.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by grants from the Collaborative Research Partner Acute Cartilage Injury Program of AO Foundation (Davos, Switzerland). We thank RJ Samulski (The Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA), X Xiao (The Gene Therapy Center, University of Pittsburgh, Pittsburgh, PA, USA) and E F Terwilliger (Division of Experimental Medicine, Harvard Institutes of Medicine and Beth Israel Deaconess Medical Center, Boston, MA, USA) for providing genomic AAV-2 plasmid clones and the 293 cell line; G Scherer (Institute for Human Genetics and Anthropology, Albert-Ludwig University, Freiburg, Germany) for the sox9 cDNA; and AJ D’Ercole and B Moats-Staats (Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA) for the human IGF-IcDNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Cucchiarini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frisch, J., Rey-Rico, A., Venkatesan, J. et al. rAAV-mediated overexpression of sox9, TGF-β and IGF-I in minipig bone marrow aspirates to enhance the chondrogenic processes for cartilage repair. Gene Ther 23, 247–255 (2016). https://doi.org/10.1038/gt.2015.106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.106

This article is cited by

Search

Quick links