Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SR-A and SREC-I binding peptides increase HDAd-mediated liver transduction

Abstract

Helper-dependent adenoviral (HDAd) vectors can mediate long-term, high-level transgene expression from transduced hepatocytes without inducing chronic toxicity. However, vector therapeutic index is narrow because of a toxic acute response with potentially lethal consequences elicited by high vector doses. Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs) are major barriers to efficient hepatocyte transduction. We investigated two small peptides (PP1 and PP2) developed by phage display to block scavenger receptor type A (SR-A) and scavenger receptor expressed on endothelial cells type I (SREC-I), respectively, for enhancement of HDAd-mediated hepatocyte transduction efficiency. Pre-incubation of J774A.1 macrophages with either PP1 or PP2 prior to HDAd infection significantly reduced viral vector uptake. In vivo, fluorochrome-conjugated PP1 and PP2 injected intravenously into mice co-localized with both CD68 and CD31 on KCs and LSECs, respectively. Compared with saline pre-treated animals, intravenous injections of both peptides prior to the injection of an HDAd resulted in up to 3.7- and 2.9-fold increase of hepatic transgene expression with PP1 and PP2, respectively. In addition to greater hepatocyte transduction, compared with control saline injected mice, pre-treatment with either peptide resulted in no increased levels of serum interleukin-6, the major marker of adenoviral vector acute toxicity. In summary, we developed small peptides that significantly increase hepatocyte transduction efficacy and improve HDAd therapeutic index with potential for clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Brunetti-Pierri N, Ng P . Helper-dependent adenoviral vectors for liver-directed gene therapy. Hum Mol Genet 2011; 20: R7–R13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P . Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 2004; 15: 35–46.

    Article  CAS  PubMed  Google Scholar 

  3. Ganesan LP, Mohanty S, Kim J, Clark KR, Robinson JM, Anderson CL . Rapid and efficient clearance of blood-borne virus by liver sinusoidal endothelium. PLoS Pathog 2011; 7: e1002281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wolff G, Worgall S, van Rooijen N, Song WR, Harvey BG, Crystal RG . Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol 1997; 71: 624–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Alemany R, Suzuki K, Curiel DT . Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 2000; 81 (Pt 11): 2605–2609.

    Article  CAS  PubMed  Google Scholar 

  6. Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 2001; 3: 28–35.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Chirmule N, Gao GP, Qian R, Croyle M, Joshi B et al. Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol Ther 2001; 3 (5 Pt 1): 697–707.

    Article  CAS  PubMed  Google Scholar 

  8. Nemunaitis J, Cunningham C, Buchanan A, Blackburn A, Edelman G, Maples P et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther 2001; 8: 746–759.

    Article  CAS  PubMed  Google Scholar 

  9. Small EJ, Carducci MA, Burke JM, Rodriguez R, Fong L, van Ummersen L et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther 2006; 14: 107–117.

    Article  CAS  PubMed  Google Scholar 

  10. Nemunaitis J, Senzer N, Sarmiento S, Zhang YA, Arzaga R, Sands B et al. A phase I trial of intravenous infusion of ONYX-015 and enbrel in solid tumor patients. Cancer Gene Ther 2007; 14: 885–893.

    Article  CAS  PubMed  Google Scholar 

  11. Piccolo P, Vetrini F, Mithbaokar P, Grove NC, Bertin T, Palmer D et al. SR-A and SREC-I are Kupffer and endothelial cell receptors for helper-dependent adenoviral vectors. Mol Ther 2013; 21: 767–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khare R, Reddy VS, Nemerow GR, Barry MA . Identification of adenovirus serotype 5 hexon regions that interact with scavenger receptors. J Virol 2012; 86: 2293–2301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Rooijen N, van Kesteren-Hendrikx E . ‘In vivo’ depletion of macrophages by liposome-mediated ‘suicide’. Methods Enzymol 2003; 373: 3–16.

    Article  CAS  PubMed  Google Scholar 

  14. Haisma HJ, Kamps JA, Kamps GK, Plantinga JA, Rots MG, Bellu AR . Polyinosinic acid enhances delivery of adenovirus vectors in vivo by preventing sequestration in liver macrophages. J Gen Virol 2008; 89 (Pt 5): 1097–1105.

    Article  CAS  PubMed  Google Scholar 

  15. Brunetti-Pierri N, Ng T, Iannitti DA, Palmer DJ, Beaudet AL, Finegold MJ et al. Improved hepatic transduction, reduced systemic vector dissemination, and long-term transgene expression by delivering helper-dependent adenoviral vectors into the surgically isolated liver of nonhuman primates. Hum Gene Ther 2006; 17: 391–404.

    Article  CAS  PubMed  Google Scholar 

  16. Kuzmin AI, Finegold MJ, Eisensmith RC . Macrophage depletion increases the safety, efficacy and persistence of adenovirus-mediated gene transfer in vivo. Gene Ther 1997; 4: 309–316.

    Article  CAS  PubMed  Google Scholar 

  17. Holzl MA, Hofer J, Kovarik JJ, Roggenbuck D, Reinhold D, Goihl A et al. The zymogen granule protein 2 (GP2) binds to scavenger receptor expressed on endothelial cells I (SREC-I). Cell Immunol 2011; 267: 88–93.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Matsumoto K, Sano H, Nagai R, Suzuki H, Kodama T, Yoshida M et al. Endocytic uptake of advanced glycation end products by mouse liver sinusoidal endothelial cells is mediated by a scavenger receptor distinct from the macrophage scavenger receptor class A. Biochem J 2000; 352 (Pt 1): 233–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naito M, Suzuki H, Mori T, Matsumoto A, Kodama T, Takahashi K . Coexpression of type I and type II human macrophage scavenger receptors in macrophages of various organs and foam cells in atherosclerotic lesions. Am J Pathol 1992; 141: 591–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lougheed M, Lum CM, Ling W, Suzuki H, Kodama T, Steinbrecher U . High affinity saturable uptake of oxidized low density lipoprotein by macrophages from mice lacking the scavenger receptor class A type I/II. J Biol Chem 1997; 272: 12938–12944.

    Article  CAS  PubMed  Google Scholar 

  21. Segers FM, Yu H, Molenaar TJ, Prince P, Tanaka T, van Berkel TJ et al. Design and validation of a specific scavenger receptor class AI binding peptide for targeting the inflammatory atherosclerotic plaque. Arterioscler Thromb Vasc Biol 2012; 32: 971–978.

    Article  CAS  PubMed  Google Scholar 

  22. Brunetti-Pierri N, Palmer DJ, Mane V, Finegold M, Beaudet AL, Ng P . Increased hepatic transduction with reduced systemic dissemination and proinflammatory cytokines following hydrodynamic injection of helper-dependent adenoviral vectors. Mol Ther 2005; 12: 99–106.

    Article  CAS  PubMed  Google Scholar 

  23. Tamura Y, Osuga J, Adachi H, Tozawa R, Takanezawa Y, Ohashi K et al. Scavenger receptor expressed by endothelial cells I (SREC-I) mediates the uptake of acetylated low density lipoproteins by macrophages stimulated with lipopolysaccharide. J Biol Chem 2004; 279: 30938–30944.

    Article  CAS  PubMed  Google Scholar 

  24. Schiedner G, Hertel S, Johnston M, Dries V, van Rooijen N, Kochanek S . Selective depletion or blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using high-capacity adenoviral vectors. Mol Ther 2003; 7: 35–43.

    Article  CAS  PubMed  Google Scholar 

  25. Manickan E, Smith JS, Tian J, Eggerman TL, Lozier JN, Muller J et al. Rapid Kupffer cell death after intravenous injection of adenovirus vectors. Mol Ther 2006; 13: 108–117.

    Article  CAS  PubMed  Google Scholar 

  26. Brunetti-Pierri N, Stapleton GE, Palmer DJ, Zuo Y, Mane VP, Finegold MJ et al. Pseudo-hydrodynamic delivery of helper-dependent adenoviral vectors into non-human primates for liver-directed gene therapy. Mol Ther 2007; 15: 732–740.

    Article  CAS  PubMed  Google Scholar 

  27. Brunetti-Pierri N, Stapleton GE, Law M, Breinholt J, Palmer DJ, Zuo Y et al. Efficient, long-term hepatic gene transfer using clinically relevant HDAd doses by balloon occlusion catheter delivery in nonhuman primates. Mol Ther 2009; 17: 327–333.

    Article  CAS  PubMed  Google Scholar 

  28. Brunetti-Pierri N, Liou A, Patel P, Palmer D, Grove N, Finegold M et al. Balloon catheter delivery of helper-dependent adenoviral vector results in sustained, therapeutic hFIX expression in rhesus macaques. Mol Ther 2012; 20: 1863–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim J, Kim PH, Kim SW, Yun CO . Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials. Biomaterials 2012; 33: 1838–1850.

    Article  CAS  PubMed  Google Scholar 

  30. Waehler R, Russell SJ, Curiel DT . Engineering targeted viral vectors for gene therapy. Nat Rev Genet 2007; 8: 573–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith GP . Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228: 1315–1317.

    Article  CAS  PubMed  Google Scholar 

  32. Nixon AE, Sexton DJ, Ladner RC . Drugs derived from phage display: From candidate identification to clinical practice. MAbs 2013; 6: 73–85.

    Article  PubMed Central  Google Scholar 

  33. Schnell MA, Zhang Y, Tazelaar J, Gao GP, Yu QC, Qian R et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001; 3 (5 Pt 1): 708–722.

    Article  CAS  PubMed  Google Scholar 

  34. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003; 80: 148–158.

    Article  CAS  PubMed  Google Scholar 

  35. van Dijk R, Montenegro-Miranda PS, Riviere C, Schilderink R, ten Bloemendaal L, van Gorp J et al. Polyinosinic acid blocks adeno-associated virus macrophage endocytosis in vitro and enhances adeno-associated virus liver-directed gene therapy in vivo. Hum Gene Ther 2013; 24: 807–813.

    Article  CAS  PubMed  Google Scholar 

  36. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365: 2357–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brown MS, Goldstein JL . Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 1983; 52: 223–261.

    Article  CAS  PubMed  Google Scholar 

  38. Pfistershammer K, Klauser C, Leitner J, Stockl J, Majdic O, Weichhart T et al. Identification of the scavenger receptors SREC-I, Cla-1 (SR-BI), and SR-AI as cellular receptors for Tamm-Horsfall protein. J Leukoc Biol 2008; 83: 131–138.

    Article  CAS  PubMed  Google Scholar 

  39. Murshid A, Gong J, Calderwood SK . Heat shock protein 90 mediates efficient antigen cross presentation through the scavenger receptor expressed by endothelial cells-I. J Immunol 2010; 185: 2903–2917.

    Article  CAS  PubMed  Google Scholar 

  40. Palmer D, Ng P . Improved system for helper-dependent adenoviral vector production. Mol Ther 2003; 8: 846–852.

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki M, Cela R, Clarke C, Bertin TK, Mourino S, Lee B . Large-scale production of high-quality helper-dependent adenoviral vectors using adherent cells in cell factories. Hum Gene Ther 2010; 21: 120–126.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Annamaria Carissimo from TIGEM Bioinformatic Core for statistical analyses and Laura Pisapia from the CNR-IGB FACS facility for FACS analysis. This work was supported by the Fondazione Telethon, Italy (TCBP37TELC and TCBMT3TELD to N.B.-P.), by a research grant of The Hyperoxaluria and Oxalosis Foundation to N.B.-P., and by the Italian Ministry of Health (GR-2009-1594913 to N.B.-P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Brunetti-Pierri.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccolo, P., Annunziata, P., Mithbaokar, P. et al. SR-A and SREC-I binding peptides increase HDAd-mediated liver transduction. Gene Ther 21, 950–957 (2014). https://doi.org/10.1038/gt.2014.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.71

This article is cited by

Search

Quick links