Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Retinal gene therapy with a large MYO7A cDNA using adeno-associated virus

Abstract

Usher 1 patients are born profoundly deaf and then develop retinal degeneration. Thus they are readily identified before the onset of retinal degeneration, making gene therapy a viable strategy to prevent their blindness. Here, we have investigated the use of adeno-associated viruses (AAVs) for the delivery of the Usher 1B gene, MYO7A, to retinal cells in cell culture and in Myo7a-null mice. MYO7A cDNA, under control of a smCBA promoter, was packaged in single AAV2 and AAV5 vectors and as two overlapping halves in dual AAV2 vectors. The 7.9-kb smCBA-MYO7A exceeds the capacity of an AAV vector; packaging of such oversized constructs into single AAV vectors may involve fragmentation of the gene. Nevertheless, the AAV2 and AAV5 single vector preparations successfully transduced photoreceptor and retinal pigment epithelium cells, resulting in functional, full-length MYO7A protein and correction of mutant phenotypes, suggesting successful homologous recombination of gene fragments. With discrete, conventional-sized dual AAV2 vectors, full-length MYO7A was detected, but the level of protein expression was variable, and only a minority of cells showed phenotype correction. Our results show that MYO7A therapy with AAV2 or AAV5 single vectors is efficacious; however, the dual AAV2 approach proved to be less effective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  Google Scholar 

  2. Maguire AM, Simonelli F, Pierce EA, Pugh EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  Google Scholar 

  3. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19: 979–990.

    Article  CAS  Google Scholar 

  4. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 2008; 105: 15112–15117.

    Article  CAS  Google Scholar 

  5. Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 1995; 374: 60–61.

    Article  CAS  Google Scholar 

  6. Liu X, Ondek B, Williams DS . Mutant myosin VIIa causes defective melanosome distribution in the RPE of shaker-1 mice. Nat Genet 1998; 19: 117–118.

    Article  Google Scholar 

  7. Liu X, Udovichenko IP, Brown SDM, Steel KP, Williams DS . Myosin VIIa participates in opsin transport through the photoreceptor cilium. J Neurosci 1999; 19: 6267–6274.

    Article  CAS  Google Scholar 

  8. Gibbs D, Kitamoto J, Williams DS . Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc Natl Acad Sci USA 2003; 100: 6481–6486.

    Article  CAS  Google Scholar 

  9. Gibbs D, Azarian SM, Lillo C, Kitamoto J, Klomp AE, Steel KP et al. Role of myosin VIIa and Rab27a in the motility and localization of RPE melanosomes. J Cell Sci 2004; 117: 6473–6483.

    Article  CAS  Google Scholar 

  10. Lopes VS, Gibbs D, Libby RT, Aleman TS, Welch DL, Lillo C et al. The Usher 1B protein, MYO7A, is required for normal localization and function of the visual retinoid cycle enzyme, RPE65. Hum Mol Genet 2011; 20: 2560–2570.

    Article  CAS  Google Scholar 

  11. Williams DS, Lopes VS . The many different cellular functions of MYO7A in the retina. Biochem Soc Trans 2011; 39: 1207–1210.

    Article  CAS  Google Scholar 

  12. Jacobson SG, Cideciyan AV, Gibbs D, Sumaroka A, Roman AJ, Aleman TS et al. Retinal disease course in Usher syndrome 1B due to MYO7A mutations. Invest Ophthalmol Vis Sci 2011; 52: 7924–7936.

    Article  CAS  Google Scholar 

  13. Chen ZY, Hasson T, Kelley PM, Schwender BJ, Schwartz MF, Ramakrishnan M et al. Molecular cloning and domain structure of human myosin-VIIa, the gene product defective in Usher syndrome 1B. Genomics 1996; 36: 440–448.

    Article  CAS  Google Scholar 

  14. Weil D, Levy G, Sahly I, Levi-Acobas F, Blanchard S, El-Amraoui A et al. Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc Natl Acad Sci USA 1996; 93: 3232–3237.

    Article  CAS  Google Scholar 

  15. Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 2012; 20: 443–455.

    Article  CAS  Google Scholar 

  16. Grieger JC, Samulski RJ . Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 2005; 79: 9933–9944.

    Article  CAS  Google Scholar 

  17. Hashimoto T, Gibbs D, Lillo C, Azarian SM, Legacki E, Zhang XM et al. Lentiviral gene replacement therapy of retinas in a mouse model for Usher syndrome type 1B. Gene Ther 2007; 14: 584–594.

    Article  CAS  Google Scholar 

  18. Yang GS, Schmidt M, Yan Z, Lindbloom JD, Harding TC, Donahue BA et al. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol 2002; 76: 7651–7660.

    Article  CAS  Google Scholar 

  19. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12: 1072–1082.

    Article  CAS  Google Scholar 

  20. Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 2008; 118: 1955–1964.

    Article  CAS  Google Scholar 

  21. Dong B, Nakai H, Xiao W . Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 2010; 18: 87–92.

    Article  CAS  Google Scholar 

  22. Lai Y, Yue Y, Duan D . Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome ⩾ 8.2 kb. Mol Ther 2010; 18: 75–79.

    Article  CAS  Google Scholar 

  23. Wu Z, Yang H, Colosi P . Effect of genome size on AAV vector packaging. Mol Ther 2010; 18: 80–86.

    Article  CAS  Google Scholar 

  24. Odom GL, Gregorevic P, Allen JM, Chamberlain JS . Gene therapy of mdx mice with large truncated dystrophins generated by recombination using rAAV6. Mol Ther 2011; 19: 36–45.

    Article  CAS  Google Scholar 

  25. Zhang Y, Duan D . Novel mini-dystrophin gene dual adeno-associated virus vectors restore neuronal nitric oxide synthase expression at the sarcolemma. Hum Gene Ther 2012; 23: 98–103.

    Article  Google Scholar 

  26. Haire SE, Pang J, Boye SL, Sokal I, Craft CM, Palczewski K et al. Light-driven cone arrestin translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV-GC1. Invest Ophthalmol Vis Sci 2006; 47: 3745–3753.

    Article  Google Scholar 

  27. Pang JJ, Lauramore A, Deng WT, Li Q, Doyle TJ, Chiodo V et al. Comparative analysis of in vivo and in vitro AAV vector transduction in the neonatal mouse retina: effects of serotype and site of administration. Vision Res 2008; 48: 377–385.

    Article  CAS  Google Scholar 

  28. Hasson T, Heintzelman MB, Santos-Sacchi J, Corey DP, Mooseker MS . Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc Natl Acad Sci USA 1995; 92: 9815–9819.

    Article  CAS  Google Scholar 

  29. Liu X, Vansant G, Udovichenko IP, Wolfrum U, Williams DS . Myosin VIIa, the product of the Usher 1B syndrome gene, is concentrated in the connecting cilia of photoreceptor cells. Cell Motil Cytoskeleton 1997; 37: 240–252.

    Article  CAS  Google Scholar 

  30. Williams DS . Usher syndrome: animal models, retinal function of Usher proteins, and prospects for gene therapy. Vision Res 2008; 48: 433–441.

    Article  CAS  Google Scholar 

  31. Klomp AE, Teofilo K, Legacki E, Williams DS . Analysis of the linkage of MYRIP and MYO7A to melanosomes by RAB27A in retinal pigment epithelial cells. Cell Motil Cytoskeleton 2007; 64: 474–487.

    Article  CAS  Google Scholar 

  32. Lopes VS, Ramalho JS, Owen DM, Karl MO, Strauss O, Futter CE et al. The ternary Rab27a-Myrip-Myosin VIIa complex regulates melanosome motility in the retinal pigment epithelium. Traffic 2007; 8: 486–499.

    Article  CAS  Google Scholar 

  33. Bostick B, Shin JH, Yue Y, Duan D . AAV-microdystrophin therapy improves cardiac performance in aged female mdx mice. Mol Ther 2011; 19: 1826–1832.

    Article  CAS  Google Scholar 

  34. Schwander M, Lopes V, Sczaniecka A, Gibbs D, Lillo C, Delano D et al. A novel allele of myosin VIIa reveals a critical function for the C-terminal FERM domain for melanosome transport in retinal pigment epithelial cells. J Neurosci 2009; 29: 15810–15818.

    Article  CAS  Google Scholar 

  35. Yang Y, Baboolal TG, Siththanandan V, Chen M, Walker ML, Knight PJ et al. A FERM domain autoregulates Drosophila myosin 7a activity. Proc Natl Acad Sci USA 2009; 106: 4189–4194.

    Article  CAS  Google Scholar 

  36. Wu L, Pan L, Wei Z, Zhang M . Structure of MyTH4-FERM domains in myosin VIIa tail bound to cargo. Science 2011; 331: 757–760.

    Article  CAS  Google Scholar 

  37. Kapranov P, Chen L, Dederich D, Dong B, He J, Steinmann KE et al. Native molecular state of adeno-associated viral vectors revealed by single-molecule sequencing. Hum Gene Ther 2012; 23: 46–55.

    Article  CAS  Google Scholar 

  38. Halbert CL, Allen JM, Miller AD . Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat Biotechnol 2002; 20: 697–701.

    Article  CAS  Google Scholar 

  39. Ghosh A, Yue Y, Duan D . Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle. J Gene Med 2006; 8: 298–305.

    Article  Google Scholar 

  40. Duan D, Yue Y, Engelhardt JF . Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 2001; 4: 383–391.

    Article  CAS  Google Scholar 

  41. Ghosh A, Yue Y, Lai Y, Duan D . A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol Ther 2008; 16: 124–130.

    Article  CAS  Google Scholar 

  42. Auricchio A, Kobinger G, Anand V, Hildinger M, O'Connor E, Maguire AM et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 2001; 10: 3075–3081.

    Article  CAS  Google Scholar 

  43. Allocca M, Manfredi A, Iodice C, Di Vicino U, Auricchio A . AAV-mediated gene replacement, either alone or in combination with physical and pharmacological agents, results in partial and transient protection from photoreceptor degeneration associated with betaPDE deficiency. Invest Ophthalmol Vis Sci 2011; 52: 5713–5719.

    Article  CAS  Google Scholar 

  44. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Nat Acad Sci USA 2008; 105: 7827–7832.

    Article  CAS  Google Scholar 

  45. Boye SL, Conlon T, Erger K, Ryals R, Neeley A, Cossette T et al. Long-term preservation of cone photoreceptors and restoration of cone function by gene therapy in the guanylate cyclase-1 knockout (GC1KO) mouse. Invest Ophthalmol Vis Sci 2011; 52: 7098–7108.

    Article  CAS  Google Scholar 

  46. Pang JJ, Dai X, Boye SE, Barone I, Boye SL, Mao S et al. Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa. Mol Ther 2011; 19: 234–242.

    Article  CAS  Google Scholar 

  47. Hasson T, Walsh J, Cable J, Mooseker MS, Brown SDM, Steel KP . Effects of shaker-1 mutations on myosin-VIIa protein and mRNA expression. Cell Motil Cytoskeleton 1997; 37: 127–138.

    Article  CAS  Google Scholar 

  48. Gibbs D, Diemer T, Khanobdee K, Hu J, Bok D, Williams DS . Function of MYO7A in the human RPE and the validity of shaker1 mice as a model for Usher syndrome 1B. Invest Ophthalmol Vis Sci 2010; 51: 1130–1135.

    Article  Google Scholar 

  49. Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M et al. A type VII myosin encoded by mouse deafness gene shaker-1. Nature 1995; 374: 62–64.

    Article  CAS  Google Scholar 

  50. Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites TJ et al. Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 2002; 28: 158–167.

    Article  CAS  Google Scholar 

  51. Jacobson SG, Acland GM, Aguirre GD, Aleman TS, Schwartz SB, Cideciyan AV et al. Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Mol Ther 2006; 13: 1074–1084.

    Article  CAS  Google Scholar 

  52. Gibbs D, Williams DS . Isolation and culture of primary mouse retinal pigmented epithlelial cells. Adv Exp Med Biol 2003; 533: 347–352.

    Article  CAS  Google Scholar 

  53. Soni LE, Warren CM, Bucci C, Orten DJ, Hasson T . The unconventional myosin-VIIa associates with lysosomes. Cell Motil Cytoskeleton 2005; 62: 13–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Nuno Martins for technical assistance. The study was supported by grants from the Foundation Fighting Blindness, the Macula Vision Research Foundation, Research to Prevent Blindness (RPB) and the NIH (EY07042 to DSW, core Grants EY00331 and EY021721 to WWH). CML was supported by NIH training Grant GM008243. HF was supported by an FCT PhD fellowship. DSW is a Jules and Doris Stein RPB Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D S Williams.

Ethics declarations

Competing interests

WWH and the University of Florida have a financial interest in the use of AAV therapies and own equity in a company (AGTC Inc.), which might, in the future, commercialize some aspects of this work.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, V., Boye, S., Louie, C. et al. Retinal gene therapy with a large MYO7A cDNA using adeno-associated virus. Gene Ther 20, 824–833 (2013). https://doi.org/10.1038/gt.2013.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.3

Keywords

This article is cited by

Search

Quick links