Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting GRK2 by gene therapy for heart failure: benefits above β-blockade

Abstract

Heart failure (HF) is a common pathological end point for several cardiac diseases. Despite reasonable achievements in pharmacological, electrophysiological and surgical treatments, prognosis for chronic HF remains poor. Modern therapies are generally symptom oriented and do not currently address specific intracellular molecular signaling abnormalities. Therefore, new and innovative therapeutic approaches are warranted and, ideally, these could at least complement established therapeutic options if not replace them. Gene therapy has potential to serve in this regard in HF as vectors can be directed toward diseased myocytes and directly target intracellular signaling abnormalities. Within this review, we will dissect the adrenergic system contributing to HF development and progression with special emphasis on G-protein-coupled receptor kinase 2 (GRK2). The levels and activity of GRK2 are increased in HF and we and others have demonstrated that this kinase is a major molecular culprit in HF. We will cover the evidence supporting gene therapy directed against myocardial as well as adrenal GRK2 to improve the function and structure of the failing heart and how these strategies may offer complementary and synergistic effects with the existing HF mainstay therapy of β-adrenergic receptor antagonism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rockman HA, Koch WJ, Lefkowitz RJ . Seven membrane spanning receptors and heart function. Nature 2002; 415: 206–212.

    Article  CAS  Google Scholar 

  2. Huang ZM, Gold JI, Koch WJ . G protein-coupled receptor kinases in normal and failing myocardium. Front Biosci 2011; 17: 3057–3060.

    Article  Google Scholar 

  3. Rengo G, Lymperopoulos T, Leosco D, Koch WJ . GRK2 as a novel gene therapy target in heart failure. J Mol Cell Cardiol 2011; 50: 785–792.

    Article  CAS  Google Scholar 

  4. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124: 304–313.

    Article  CAS  Google Scholar 

  5. Phan HM, Gao MH, Lai NC, Tang T, Hammond HK . New signaling pathways associated with increased cardiac adenylyl cyclase 6 expression: implications for possible congestive heart failure therapy. Trends Cardiovasc Med 2007; 17: 215–221.

    Article  CAS  Google Scholar 

  6. Lymperopoulos A, Rengo G, Koch WJ . Adrenal adrenoceptors in heart failure: fine-tuning cardiac stimulation. Trends Mol Med 2007; 13: 503–511.

    Article  CAS  Google Scholar 

  7. Zhang GX, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L et al. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res 2005; 65: 230–238.

    Article  CAS  Google Scholar 

  8. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311: 819–823.

    Article  CAS  Google Scholar 

  9. Dzimiri N . Regulation of β-adrenoceptor signaling in cardiac function and disease. Pharmacol Rev 1999; 51: 465–501.

    CAS  PubMed  Google Scholar 

  10. Ungerer M, Böhm M, Elce JS, Erdmann E, Lohse MJ . Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation 1993; 87: 454–463.

    Article  CAS  Google Scholar 

  11. Penn RB, Pronin AN, Benovic JL . Regulation of G protein-coupled receptor kinases. Trends Cardiovasc Med 2000; 10: 81–89.

    Article  CAS  Google Scholar 

  12. Sallese M, Mariggiò S, D’Urbano E, Iacovelli L, De Blasi A . Selective regulation of Gq signaling by G protein-coupled receptor kinase 2: direct interaction of kinase N terminus with activated Gαq. Mol Pharmacol 2000; 57: 826–831.

    Article  CAS  Google Scholar 

  13. Dhami GK, Anborgh PH, Dale LB, Sterne-Marr R, Ferguson SS . Phosphorylation-independent regulation of metabotropic glutamate receptor signaling by G protein-coupled receptor kinase 2. J Biol Chem 2002; 277: 25266–25272.

    Article  CAS  Google Scholar 

  14. Koch WJ, Inglese J, Stone W, Lefkowitz RJ . The binding site for the βγ subunits of heterotrimeric G proteins on the β-adrenergic receptor kinase. J Biol Chem 1993; 268: 8256–8260.

    CAS  PubMed  Google Scholar 

  15. Lodowski DT, Pitcher JA, Capel WD, Lefkowitz RJ, Tesmer JJ . Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gβγ. Science 2003; 300: 1256–1262.

    Article  CAS  Google Scholar 

  16. Touhara K, Koch WJ, Hawes BE, Lefkowitz RJ . Mutational analysis of the pleckstrin homology domain of the β-adrenergic receptor kinase. Differential effects on Gβγ- and phosphatidylinositol 4,5-bisphosphate binding. J Biol Chem 1995; 270: 17000–17005.

    Article  CAS  Google Scholar 

  17. Ungerer M, Parruti G, Böhm M, Puzicha M, DeBlasi A, Erdmann E et al. Expression of β-arrestins and β-adrenergic receptor kinases in the failing human heart. Circ Res 1994; 74: 206–213.

    Article  CAS  Google Scholar 

  18. Leineweber K, Brandt K, Wludyka B, Beilfuss A, Pönicke K, Heinroth-Hoffmann I et al. Ventricular hypertrophy plus neurohumoral activation is necessary to alter the cardiac β-adrenoceptor system in experimental heart failure. Circ Res 2002; 91: 1056–1062.

    Article  CAS  Google Scholar 

  19. Lymperopoulos T, Rengo G, Funakoshi H, Eckhart AD, Koch WJ . Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med 2007; 13: 315–323.

    Article  CAS  Google Scholar 

  20. Lymperopoulus A, Rengo G, Gao E, Ebert SN, Dorn II GW, Koch WJ . Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 2010; 285: 16378–16386.

    Article  Google Scholar 

  21. Harris CA, Chuang TT, Scorer CA . Expression of GRK2 is increased in the left ventricles of cardiomyopathic hamsters. Bas Res Cardiol 2001; 96: 364–368.

    Article  CAS  Google Scholar 

  22. Gros R, Benovic JL, Tan CM, Feldman RD . G-protein-coupled receptor kinase activity is increased in hypertension. J Clin Invest 1997; 99: 2087–2093.

    Article  CAS  Google Scholar 

  23. Choi D-J, Koch WJ, Hunter JJ, Rockman HA . Mechanism for β-adrenergic receptor desensitization in cardiac hypertrophy is increased β-adrenergic receptor kinase. J Biol Chem 1997; 272: 17223–17229.

    Article  CAS  Google Scholar 

  24. Ungerer M, Kessebohm K, Kronsbein K, Lohse MJ, Richardt G . Activation of β-adrenergic receptor kinase during myocardial ischemia. Circ Res 1996; 79: 455–460.

    Article  CAS  Google Scholar 

  25. Anderson KM, Eckhart AD, Willette RN, Koch WJ . The myocardial β-adrenergic system in spontaneously hypertensive heart failure (SHHF) rats. Hypertension 1999; 33: 402–407.

    Article  CAS  Google Scholar 

  26. Ogletree-Hughes ML, Stull LB, Sweet WE, Smedira NG, McCarthy PM, Moravec CS . Mechanical unloading restores β-adrenergic responsiveness and reverses receptor downregulation in the failing human heart. Circulation 2001; 104: 881–886.

    Article  CAS  Google Scholar 

  27. Akhter SA, D’Souza KM, Malhotra R, Staron ML, Valeroso TB, Fedson SE et al. Reversal of impaired myocardial β-adrenergic receptor signaling by continuous-flow left ventricular assist device support. J Heart Lung Transplant 2010; 29: 603–609.

    Article  Google Scholar 

  28. Bonita RE, Raake PW, Otis NJ, Chuprun JK, Spivak T, Dasgupta A et al. Dynamic changes in lymphocyte GRK2 levels in cardiac transplant patients: a biomarker for left ventricular function. Clin Trans Sci 2010; 3: 14–18.

    Article  CAS  Google Scholar 

  29. Williams ML, Koch WJ . Viral-based myocardial gene therapy approaches to alter cardiac function. Annu Rev Physiol 2004; 66: 49–75.

    Article  CAS  Google Scholar 

  30. Vinge LE, Raake PW, Koch WJ . Gene therapy in heart failure. Circ Res 2008; 102: 1458–1470.

    Article  CAS  Google Scholar 

  31. Lymperopoulos A, Rengo G, Zincarelli C, Soltys S, Koch WJ . Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity. Mol Ther 2008; 16: 302–307.

    Article  CAS  Google Scholar 

  32. Brinks H, Koch WJ . Targeting G protein-coupled receptor kinases (GRKs) in heart failure. Drug Discov Today Dis Mech 2010; 7: e129–e134.

    Article  CAS  Google Scholar 

  33. Bristow MR . Treatment of chronic heart failure with β-adrenergic receptor antagonists: a convergence of receptor pharmacology and clinical cardiology. Circ Res 2011; 109: 1176–1194.

    Article  CAS  Google Scholar 

  34. Mann DL . Mechanisms and models in heart failure: a combinatorial approach. Circulation 1999; 100: 999–1008.

    Article  CAS  Google Scholar 

  35. Leineweber K, Rohe P, Beilfuss A, Wolf C, Sporkmann H, Bruck H et al. G-protein-coupled receptor kinase activity in human heart failure: effects of beta-adrenoceptor blockade. Cardiovasc Res 2005; 66: 512–519.

    Article  CAS  Google Scholar 

  36. Sigmund M, Jakob H, Becker H, Hanrath P, Schumacher C, Eschenhagen T et al. Effects of metoprolol on myocardial β-adrenoceptors and Gi α-proteins in patients with congestive heart failure. Eur J Clin Pharmacol 1996; 51: 127–132.

    Article  CAS  Google Scholar 

  37. Kubo H, Margulies KB, Piacentino III V, Gaughan JP, Houser SR . Patients with end-stage congestive heart failure treated with beta-adrenergic receptor antagonists have improved ventricular myocyte calcium regulatory protein abundance. Circulation 2001; 104: 1012–1018.

    Article  CAS  Google Scholar 

  38. Heilbrunn SM, Shah P, Bristow MR, Valantine HA, Ginsburg R, Fowler MB . Increased β-receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 1989; 79: 483–490.

    Article  CAS  Google Scholar 

  39. Iaccarino G, Tomhave ED, Lefkowitz RJ, Koch WJ . Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by β-adrenergic receptor stimulation and blockade. Circulation 1998; 98: 1783–1789.

    Article  CAS  Google Scholar 

  40. Rengo G, Lymperopoulos A, Zincarelli C, Donniacuo M, Soltys S, Rabinowitz JR et al. Myocardial adeno-associated virus serotype-6-βARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 2009; 119: 89–98.

    Article  CAS  Google Scholar 

  41. Brodde OE . Beta-adrenoceptor blocker treatment and the cardiac beta-adrenoceptor-G-protein(s)-adenylyl cyclase system in chronic heart failure. Naunyn Schmiedebergs Arch Pharmacol 2007; 374: 361–372.

    Article  CAS  Google Scholar 

  42. Packer M . Current role of β-adrenergic blockers in the management of chronic heart failure. Am J Med 2001; 110: 81S–94S.

    Article  Google Scholar 

  43. Freeman K, Lerman I, Kranias EG, Bohlmeyer T, Bristow MR, Lefkowitz RJ et al. Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. J Clin Invest 2001; 107: 967–974.

    Article  CAS  Google Scholar 

  44. Shah AS, White DC, Emani S, Kypson AP, Lilly RE, Wilson K et al. In vivo ventricular gene delivery of a β-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 2001; 103: 1311–1316.

    Article  CAS  Google Scholar 

  45. Tevaearai HT, Eckhart AD, Shotwell KF, Wilson K, Koch WJ . Ventricular dysfunction following cardioplegic arrest is improved after myocardial gene transfer of a β-adrenergic receptor kinase inhibitor. Circulation 2001; 104: 2069–2074.

    Article  CAS  Google Scholar 

  46. Raake PW, Schlegel P, Ksienzyk J, Reinkober J, Barthelmes J, Schinkel S et al. AAV6.βARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal model of heart failure. Eur Heart J 2012 (in press).

  47. Casey LM, Pistner AR, Belmonte SL, Migdalovich D, Stolpnik O, Nwakanma FE et al. Small molecule disruption of Gβγ signaling inhibits the progression of heart failure. Circ Res 2010; 107: 532–539.

    Article  CAS  Google Scholar 

  48. Blaxall BC, Spang R, Rockman HA, Koch WJ . Differential myocardial gene expression in the development and rescue of murine heart failure. Physiol Genomics 2003; 15: 105–114.

    Article  CAS  Google Scholar 

  49. Rockman HA, Chien KR, Choi D-J, Iaccarino G, Hunter JJ, Ross Jr J et al. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of heart failure in gene targeted mice. Proc Natl Acad Sci USA 1998; 95: 7000–7005.

    Article  CAS  Google Scholar 

  50. Harding V, Jones L, Lefkowitz RJ, Koch WJ, Rockman HA . Cardiac βARK1 inhibition prolongs survival and augments β blocker therapy in a mouse model of severe heart failure. Proc Natl Acad Sci USA 2001; 98: 5809–5814.

    Article  CAS  Google Scholar 

  51. Williams ML, Hata JA, Shroder J, Rampersaud E, Petrofski J, Jakoi A et al. Targeted β-adrenergic receptor kinase (βARK1) inhibition by gene transfer in failing human hearts. Circulation 2004; 109: 1590–1593.

    Article  CAS  Google Scholar 

  52. Pleger ST, Shan C, Kszienyk J, Bekeredjian R, Boekstegers P, Hinkel R et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 2011; 3: 92ra64.

    Article  CAS  Google Scholar 

  53. Raake P, Vinge LE, Gao E, Boucher M, Chen X, Kerkela R et al. G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circ Res 2008; 103: 413–422.

    Article  CAS  Google Scholar 

  54. Voelkers M, Weidenhammer C, Herzog N, Qiu G, Spaich K, von Wegner F et al. The inotropic peptide βARKct improves βAR responsiveness in normal and failing cardiomyocytes through Gβγ-mediated L-type calcium current disinhibition. Circ Res 2011; 108: 27–39.

    Article  CAS  Google Scholar 

  55. Lymperopoulos A, Rengo G, Zincarelli C, Soltys S, Koch WJ . Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity. Mol Ther 2008; 16: 302–307.

    Article  CAS  Google Scholar 

  56. Gilbert EM, Abraham WT, Olsen S, Hattler B, White M, Mealy P et al. Comparative hemodynamic, left ventricular functional, and antiadrenergic effects of chronic treatment with metoprolol versus carvedilol in the failing heart. Circulation 1996; 94: 2817–2825.

    Article  CAS  Google Scholar 

  57. Perrino C, Naga Prasad SV, Patel M, Wolf MJ, Rockman HA . Targeted inhibition of β-adrenergic receptor kinase-1-associated phosphoinositide-3 kinase activity preserves β-adrenergic receptor signaling and prolongs survival in heart failure induced by calsequestrin overexpression. J Am Coll Cardiol 2005; 45: 1862–1870.

    Article  CAS  Google Scholar 

  58. Curcio A, Noma T, Naga Prasad SV, Wolf MJ, Lemaire A, Perrino C et al. Competitive displacement of phosphoinositide 3-kinase from β-adrenergic receptor kinase-1 improves postinfarction adverse myocardial remodeling. Am J Physiol 2006; 291: H1754–H1760.

    CAS  Google Scholar 

  59. Li Z, Laugwitz KL, Pinkernell K, Pragst I, Baumgartner C, Hoffmann E et al. Effects of two Gβγ-binding proteins--N-terminally truncated phosducin and β-adrenergic receptor kinase C terminus (βARKct)--in heart failure. Gene Therapy 2003; 10: 1354–1361.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W J Koch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinkober, J., Tscheschner, H., Pleger, S. et al. Targeting GRK2 by gene therapy for heart failure: benefits above β-blockade. Gene Ther 19, 686–693 (2012). https://doi.org/10.1038/gt.2012.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.9

Keywords

This article is cited by

Search

Quick links