Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

High-affinity PEGylated polyacridine peptide polyplexes mediate potent in vivo gene expression

Abstract

Polyethylene glycol (PEG)ylated polyacridine peptides bind to plasmid DNA with high affinity to form unique polyplexes that possess a long circulatory half-life and are hydrodynamically (HD)-stimulated to produce efficient gene expression in the liver of mice. We previously demonstrated that acridine-modified lysine (Acr) in (Acr-Lys)6-Cys-PEG5kDa stabilizes a 1-μg pGL3 dose for up to 1 h in the circulation, resulting in HD-stimulated (saline only) gene expression in the liver, equivalent in magnitude to direct-HD dosing of 1 μg of pGL3. In this study, we report that increasing the spacing of Acr with either four or five Lys residues markedly increases the stability of PEGylated polyacridine peptide polyplexes in the circulation allowing maximal HD-stimulated expression for up to 5 h post DNA administration. Co-administration of a decoy dose of 9 μg of non-expressing DNA polyplex with 1 μg of pGL3 polyplex further extended the HD-stimulated expression to 9 h. This structure–activity relationship study defines the PEGylated polyacridine peptide requirements for maintaining fully transfection competent plasmid DNA in the circulation for 5 h and provides an understanding as to why polyplexes or lipoplexes prepared with polyethylenimine, chitosan or Lipofectamine are inactive within 5 min following intravenous dosing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fernandez CA, Rice KG . Engineered nanoscaled polyplex gene delivery systems. Mol Pharm 2009; 6: 1277–1289.

    Article  CAS  PubMed  Google Scholar 

  2. Merdan T, Kunath K, Petersen H, Bakowsky U, Voigt KH, Kopecek J et al. PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconj Chem 2005; 16: 785–792.

    Article  CAS  Google Scholar 

  3. Cohen RN, van der Aa MA, Macaraeg N, Lee AP, Szoka FC . Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection. J Cont Rel 2009; 135: 166–174.

    Article  CAS  Google Scholar 

  4. Burke RS, Pun SH . Extracellular barriers to in vivo PEI and PEGylated PEI polyplex-mediated gene delivery to the liver. Bioconj Chem 2008; 19: 693–704.

    Article  CAS  Google Scholar 

  5. Grigsby C, Leong K . Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. J Royal Soc Interface 2010; 7: S67–S82.

    Article  CAS  Google Scholar 

  6. Van der Aa MA, Koning GA, d’Oliveira C, Oosting RS, Wilschut KJ, Hennink WE et al. An NLS peptide covalently linked to linear DNA does not enhance transfection efficiency of cationic polymer based gene delivery systems. J Gene Med 2005; 7: 208–217.

    Article  CAS  PubMed  Google Scholar 

  7. Tanimoto M, Kamiya H, Minakawa N, Matsuda A, Harashima H . No enhancement of nuclear entry by direct conjugation of a nuclear localization signal peptide to linearized DNA. Bioconj Chem 2003; 14: 1197–1202.

    Article  CAS  Google Scholar 

  8. Fernandez CA, Baumhover NJ, Duskey JT, Khargharia S, Kizzire K, Ericson MD et al. Metabolically stabilized long-circulating PEGylated polyacridine peptide polyplexes mediate hydrodynamically stimulated gene expression in liver. Gene Therapy 2011; 18: 23–37.

    Article  CAS  PubMed  Google Scholar 

  9. Chen CP, Kim JS, Liu D, Rettig GR, McAnuff MA, Martin ME et al. Synthetic PEGylated glycoproteins and their utility in gene delivery. Bioconj Chem 2007; 18: 371–378.

    Article  Google Scholar 

  10. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. PNAS USA 1995; 92: 7297–7301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. PNAS USA 1987; 84: 7413–7417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu F, Song Y, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy 1999; 6: 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  13. Rettig GR, Rice KG . Quantitative in vivo imaging of non-viral-mediated gene expression and rnai-mediated knockdown. Bioluminescence. In: Rich P, Douillet C, (eds). Methods in Molecular Biology, vol. 574. Humana Press: New York, 2009, pp 155–171.

    Google Scholar 

  14. Rettig GR, McAnuff M, Liu D, Kim JS, Rice KG . Quantitative bioluminscence imaging of transgene expression in vivo. Anal Biochem 2006; 335: 90–94.

    Article  Google Scholar 

  15. Collard WT, Collard WT, Yang Y, Kwok KY, Park Y, Rice KG et al. Biodistribution, metabolism, and in vivo gene expression of low molecular weight glycopeptide polyethylene glycol peptide DNA co-condensates. J Pharm Sci 2000; 89: 499–512.

    Article  CAS  PubMed  Google Scholar 

  16. Tung C, Zhu T, Lackland H, Stein S . An acridine amino acid derivative for use in Fmoc peptide synthesis. Peptide Res 1992; 5: 115–118.

    CAS  Google Scholar 

  17. Ueyama H, Takagi M, Waki M, Takenaka S . DNA binding behavior of peptides carrying acridinyl units: First example of effective poly-intercalation. Nucleic Acids Symp Ser (Oxf) 2001; 1: 163–164.

    Article  Google Scholar 

  18. Kwok KY, McKenzie DL, Evers DL, Rice KG . Formulation of highly soluble poly(ethylene glycol)-peptide DNA condensates. J Pharm Sci 1999; 88: 996–1003.

    Article  CAS  PubMed  Google Scholar 

  19. Adami RC, Rice KG . Metabolic stability of glutaraldehyde cross-linked peptide DNA condensates. J Pharm Sci 1999; 88: 739–746.

    Article  CAS  PubMed  Google Scholar 

  20. Mullen PM, Lollo CP, Phan QC, Amini A, Banaszczyk MG, Fabrycki JM et al. Strength of conjugate binding to plasmid DNA affects degradation rate and expression level in vivo. Biochim Biophys Acta 2000; 1523: 103–110.

    Article  CAS  PubMed  Google Scholar 

  21. Adami RC, Collard WT, Gupta SA, Kwok KY, Bonadio J, Rice KG et al. Stability of peptide-condensed plasmid dna formulations. J Pharm Sci 1998; 87: 678–683.

    Article  CAS  PubMed  Google Scholar 

  22. Ogris M, Brunner S, Schüller S, Kircheis R, Wagner E . PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 1999; 6: 595–605.

    Article  CAS  PubMed  Google Scholar 

  23. Heyes J, Palmer L, Chan K, Giesbrecht C, Jeffs L, MacLachlan I . Lipid encapsulation enables the effective systemic delivery of polyplex plasmid DNA. Mol Ther 2007; 15: 713–720.

    Article  CAS  PubMed  Google Scholar 

  24. Fortune JA, Novobrantseva TI, Klibanov AM . Highly effective gene transfection in vivo by alkylated polyethylenimine. J Drug Deliv 2011; 2011: 204058.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim KS, Lei Y, Stolz DB, Liu D . Bifunctional compounds for targeted hepatic gene delivery. Gene Therapy 2007; 14: 704–708.

    Article  CAS  PubMed  Google Scholar 

  26. Harris T, Green JJ, Fung PW, Langer R, Anderson DG, Bhatia SN et al. Tissue-specific gene delviery via nanoparticle coating. Biomaterials 2010; 31: 998–1006.

    Article  CAS  PubMed  Google Scholar 

  27. Baumhover NJ, Anderson K, Fernandez CA, Rice KG . Synthesis and in vitro testing of new potent polyacridine-melittin gene delivery peptides. Bioconj Chem 2010; 21: 74–86.

    Article  CAS  Google Scholar 

  28. Kawabata K, Takakura Y, Hashida M . The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm Res 1995; 12: 825–830.

    Article  CAS  PubMed  Google Scholar 

  29. Fernandez CA, Baumhover NJ, Anderson K, Rice KG . Discovery of metabolically stablized electronegative polyacridine-PEG peptide DNA open polyplexes. Bioconj Chem 2010; 21: 723–730.

    Article  CAS  Google Scholar 

  30. Kunath K, von Harpe A, Petersen H, Fischer D, Voigt K, Kissel T et al. The Structure of peg-modified poly(ethylene imines) influences biodistribution and pharmacokinetics of their complexes with NF-κB decoy in Mice. Pharm Res 2002; 19: 810–817.

    Article  CAS  PubMed  Google Scholar 

  31. Li S-D, Chen Y-C, Hackett MJ, Huang L . Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther 2007; 16: 163–169.

    Article  PubMed  Google Scholar 

  32. Jaing X, Dai H, Leong KW, Goh SH, Mao HQ, Yang YY et al. Chitosan-g-PEG/DNA complexes deliver gene to the rat liver via intrabiliary and intraportal infusions. J Gene Med 2006; 8: 477–487.

    Article  Google Scholar 

  33. Morille M, Montier T, Legras P, Carmoy N, Brodin P, Pitard B et al. Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials 2010; 31: 321–329.

    Article  CAS  PubMed  Google Scholar 

  34. Mahato RI, Kawabata K, Nomura T, Takakura Y, Hashida M . Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes. J Pharm Sci 1995; 84: 1267–1271.

    Article  CAS  PubMed  Google Scholar 

  35. Mahato RI, Kawabata K, Takakura Y, Hashida M . In vivo disposition characteristics of plasmid DNA complexed with cationic liposomes. J Drug Target 1995; 3: 149–157.

    Article  CAS  PubMed  Google Scholar 

  36. Anderson K, Fernandez CA, Rice KG . N-glycan targeted gene delivery to the dendritic cell SIGN receptor. Bioconj Chem 2010; 21: 1479–1485.

    Article  CAS  Google Scholar 

  37. Wadhwa MS, Collard WT, Adami RC, McKenzie DL, Rice KG . Peptide-mediated gene delivery: influence of peptide structure on gene expression. Bioconj Chem 1997; 8: 81–88.

    Article  CAS  Google Scholar 

  38. Terebesi J, Kwok KY, Rice KG . Iodinated plasmid DNA as a tool for studying gene delivery. Anal Biochem 1998; 263: 120–123.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang G, Budker V, Wolff JA . High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999; 10: 1735–1737.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the NIH grant GM097093 and (KK) NIH T32GM067795.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K G Rice.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kizzire, K., Khargharia, S. & Rice, K. High-affinity PEGylated polyacridine peptide polyplexes mediate potent in vivo gene expression. Gene Ther 20, 407–416 (2013). https://doi.org/10.1038/gt.2012.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.47

Keywords

This article is cited by

Search

Quick links