Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heat-shrinking DNA nanoparticles for in vivo gene delivery

Abstract

The particle size of a PEG-peptide DNA nanoparticle is a key determinant of biodistribution following i.v. dosing. DNA nanoparticles of <100 nm in diameter are sufficiently small to cross through fenestrated endothelial cells to target hepatocytes in the liver. In addition, DNA nanoparticles must be close to charge-neutral to avoid recognition and binding to scavenger receptors found on Kupffer cells and endothelial cells in the liver. In the present study, we demonstrate an approach to heat shrink DNA nanoparticles to reduce their size to <100 nm to target hepatocytes. An optimized protocol heated plasmid DNA at 100 °C for 10 min resulting in partial denaturation. The immediate addition of a polyacridine PEG-peptide followed by cooling to room temperature resulted in heat-shrunken DNA nanoparticles that were ~70 nm in diameter compared with 170 nm when heating was omitted. Heat shrinking resulted in the conversion of supercoiled DNA into open circular to remove strain during compaction. Heat-shrunken DNA nanoparticles were stable to freeze-drying and reconstitution in saline. Hydrodynamic dosing established that 70 nm heat-shrunken DNA nanoparticles efficiently expressed luciferase in mouse liver. Biodistribution studies revealed that 70 nm DNA nanoparticles are rapidly and transiently taken up by liver whereas 170 nm DNA nanoparticles avoid liver uptake due to their larger size. The results provide a new approach to decrease the size of polyacridine PEG-peptide DNA nanoparticles to allow penetration of the fenestrated endothelium of the liver for the purpose of transfecting hepatocytes in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

    Article  CAS  PubMed  Google Scholar 

  2. Wadhwa MS, Collard WT, Adami RC, McKenzie DL, Rice KG. Peptide-mediated gene delivery: influence of peptide structure on gene expression. Bioconjug Chem. 1997;8:81–8.

    Article  CAS  PubMed  Google Scholar 

  3. Wagner E, Zenke M, Cotten M, Beug H, Birnstiel ML. Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc Natl Acad Sci USA. 1990;87:3410–4.

    Article  CAS  PubMed  Google Scholar 

  4. Kabanov AV, Kabanov VA. DNA complexes with polycations for the delivery of genetic material into cells. Bioconjug Chem. 1995;6:7–20.

    Article  CAS  PubMed  Google Scholar 

  5. Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 1998;5:1425–33.

    Article  CAS  PubMed  Google Scholar 

  6. Bettinger T, Remy JS, Erbacher P. Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes. Bioconjug Chem. 1999;10:558–61.

    Article  CAS  PubMed  Google Scholar 

  7. Park SY, Harriers D, Gelbart WM. Topological defects and optimum size of DNA condensates. Biophys. J. 1998;75:714–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Erbacher P, Roche AC, Monsigny M, Midoux P. Glycosylated polylysine/DNA complexes: gene transfer efficiency in relation with the size and the sugar substitution level of glycosylated polylysines and with the plasmid size. Bioconjug Chem. 1995;6:401–10.

    Article  CAS  PubMed  Google Scholar 

  9. Fink TL, Klepcyk PJ, Oette SM, Gedeon CR, Hyatt SL, Kowalczyk TH, et al. Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther. 2006;13:1048–51.

    Article  CAS  PubMed  Google Scholar 

  10. Kaminskas LM, Boyd BJ, Karellas P, Krippner GY, Lessene R, Kelly B, et al. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly l-lysine dendrimers. Mol Pharm. 2008;5:449–63.

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez CA, Baumhover NJ, Duskey JT, Khargharia S, Kizzire K, Ericson MD, et al. Metabolically stabilized long-circulating PEGylated polyacridine peptide polyplexes mediate hydrodynamically stimulated gene expression in liver. Gene Ther. 2011;18:23–37.

    Article  CAS  PubMed  Google Scholar 

  12. Kwok KY, McKenzie DL, Evers DL, Rice KG. Formulation of highly soluble poly(ethylene glycol)-peptide DNA condensates. J Pharm Sci. 1999;88:996–1003.

    Article  CAS  PubMed  Google Scholar 

  13. Pezzoli D, Giupponi E, Mantovani D, Candiani G. Size matters for in vitro gene delivery: investigating the relationships among complexation protocol, transfection medium, size and sedimentation. Sci Rep. 2017;7:44134.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hickey JW, Santos JL, Williford JM, Mao HQ. Control of polymeric nanoparticle size to improve therapeutic delivery. J Control Release. 2015;219:536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu G, Li D, Pasumarthy MK, Kowalczyk TH, Gedeon CR, Hyatt SL, et al. Nanoparticles of compacted DNA transfect postmitotic cells. J Biol Chem. 2003;278:32578–86.

    Article  CAS  PubMed  Google Scholar 

  16. Prabha S, Zhou W, Panyam J, Labhasetwar V. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm. 2002;244:105–15.

    Article  CAS  PubMed  Google Scholar 

  17. Wisse E, Jacobs F, Topal B, Frederik P, De Geest B. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 2008;15:1193–9.

    Article  CAS  PubMed  Google Scholar 

  18. Jacobs F, Wisse E, De Geest B. The role of liver sinusoidal cells in hepatocyte-directed gene transfer. Am J Pathol. 2010;176:14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwok KY, Adami RC, Hester KC, Park Y, Thomas S, Rice KG. Strategies for maintaining the particle size of peptide DNA condensates following freeze-drying. Int J Pharm. 2000;203:81–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lei Y, Huang S, Sharif-Kashani P, Chen Y, Kavehpour P, Segura T. Incorporation of active DNA/cationic polymer polyplexes into hydrogel scaffolds. Biomaterials. 2010;31:9106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dash PR, Read ML, Barrett LB, Wolfert MA, Seymour LW. Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther. 1999;6:643–50.

    Article  CAS  PubMed  Google Scholar 

  22. Oupický D, Koňák Č, Dash PR, Seymour LW, Ulbrich K. Effect of albumin and polyanion on the structure of DNA complexes with polycation containing hydrophilic nonionic block. Bioconjug Chem.1999;10:764–72.

    Article  PubMed  CAS  Google Scholar 

  23. Kizzire K, Khargharia S, Rice KG. High-affinity PEGylated polyacridine peptide polyplexes mediate potent in vivo gene expression. Gene Ther. 2013;20:407–16.

    Article  CAS  PubMed  Google Scholar 

  24. Khargharia S, Kizzire K, Ericson MD, Baumhover NJ, Rice KG. PEG length and chemical linkage controls polyacridine peptide DNA polyplex pharmacokinetics, biodistribution, metabolic stability and in vivo gene expression. J Control Release. 2013;170:325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Allen RJ, Mathew B, Rice KG. PEG-peptide inhibition of scavenger receptor uptake of nanoparticles by the liver. Mol Pharm. 2018;15:3881–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baumhover NJ, Duskey JT, Khargharia S, White CW, Crowley ST, Allen RJ, et al. Structure–activity relationship of PEGylated polylysine peptides as scavenger receptor inhibitors for non-viral gene delivery. Mol Pharm. 2015;12:4321–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khargharia S, Baumhover NJ, Crowley ST, Duskey J, Rice KG. The uptake mechanism of PEGylated DNA polyplexes by the liver influences gene expression. Gene Ther. 2014;21:1021–8.

    Article  CAS  PubMed  Google Scholar 

  28. Millili PG, Yin DH, Fan H, Naik UP, Sullivan MO. Formulation of peptide nucleic acid based nucleic acid delivery construct. Bioconjug Chem. 2010;21:445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ho YP, Grigsby CL, Zhao F, Leong KW. Tuning physical properties of nanocomplexes through microfluidics-assisted confinement. Nano Lett. 2011;11:2178–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu M, Ho YP, Grigsby CL, Nawaz AA, Leong KW, Huang TJ. Three-dimensional hydrodynamic focusing method for polyplex synthesis. ACS Nano. 2014;8:332–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grigsby CL, Ho YP, Lin C, Engbersen JF, Leong KW. Microfluidic preparation of polymer-nucleic acid nanocomplexes improves nonviral gene transfer. Sci Rep. 2013;3:3155.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Santos JL, Ren Y, Vandermark J, Archang MM, Williford JM, Liu HW, et al. Continuous production of discrete plasmid DNA-polycation nanoparticles using flash nanocomplexation. Small. 2016;12:6214–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Terebesi J, Kwok KY, Rice KG. Iodinated plasmid DNA as a tool for studying gene delivery. Anal Biochem. 1998;263:120–3.

    Article  CAS  PubMed  Google Scholar 

  34. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999;6:1258–66.

    Article  CAS  PubMed  Google Scholar 

  35. Rettig, GR; Rice, KG. Quantitative in vivo imaging of non-viral-mediated gene expression and RNAi-mediated knockdown. Bioluminescence. 2009;574:155–71.

  36. Liu Y, Berrido AM, Hua ZC, Tse-Dinh YC, Leng F. Biochemical and biophysical properties of positively supercoiled DNA. Biophys Chem. 2017;230:68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Driessen RP, Sitters G, Laurens N, Moolenaar GF, Wuite GJ, Goosen N, et al. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry. 2014;53:6430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wakelin LP, Bu X, Eleftheriou A, Parmar A, Hayek C, Stewart BW. Bisintercalating threading diacridines: relationships between DNA binding, cytotoxicity, and cell cycle arrest. J Med Chem. 2003;46:5790–802.

    Article  CAS  PubMed  Google Scholar 

  39. Adami RC, Collard WT, Gupta SA, Kwok KY, Bonadio J, Rice KG. Stability of peptide-condensed plasmid DNA formulations. J Pharm Sci. 1998;87:678–83.

    Article  CAS  PubMed  Google Scholar 

  40. McKenzie DL, Kwok KY, Rice KG. A potent new class of reductively activated peptide gene delivery agents. J Biol Chem. 2000;275:9970–7.

    Article  CAS  PubMed  Google Scholar 

  41. Brady J, Radonovich M, Thoren M, Das G, Salzman NP. Simian virus 40 major late promoter: an upstream DNA sequence required for efficient in vitro transcription. Mol Cell Biol. 1984;4:133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holman GG, Zewail-Foote M, Smith AR, Johnson KA, Iverson BL. A sequence-specific threading tetra-intercalator with an extremely slow dissociation rate constant. Nat Chem. 2011;3:875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Millili PG, Selekman JA, Blocker KM, Johnson DA, Naik UP, Sullivan MO. Structural and functional consequences of poly(ethylene glycol) inclusion on DNA condensation for gene delivery. Microsc Res Tech. 2010;73:866–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from NIH Grants GM117785 and T32 GM00865 and for the technical support from the Central Microscopy Research Facility at the University of Iowa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin G. Rice.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, B., Ramanathan, R., Delvaux, N.A. et al. Heat-shrinking DNA nanoparticles for in vivo gene delivery. Gene Ther 27, 196–208 (2020). https://doi.org/10.1038/s41434-019-0117-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0117-0

Search

Quick links