Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rhadinovirus vector-derived human telomerase reverse transcriptase expression in primary T cells

Abstract

The rhadinovirus herpesvirus saimiri (HVS) as a gene delivery vector allows large DNA insertions and long-termed gene expression. In the case of T-cell transduction, such vectors use the viral transformation-associated genes of HVS C488 for T-cell amplification. In this report, we investigated whether the gene for the catalytic telomerase subunit human telomerase reverse transcriptase (hTERT) can substitute for the transformation-associated genes in rhadinoviral T-cell transduction and amplification. By using virus mutants generated by en passant mutagenesis from bacterial artificial chromosomes, we observed a very early and functional transgene expression even by virus mutants without transformation-associated genes. The markers of T-cell transformation by HVS, namely CD2 hyperreactivity, overexpression of interleukin-26, and of the tyrosine kinase Lyn could neither be induced nor enhanced by ectopic hTERT expression. When the viral transformation-associated genes were replaced by the hTERT gene, it was not sufficient for growth transformation, although hTERT was efficiently transduced and functionally expressed by the rhadinovirus vector. Thus, the transformation-associated proteins StpC and Tip are responsible for the T-cell phenotype after transduction by HVS and, additionally, modulate telomerase activity independently of hTERT expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992; 89: 10114–10118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Blackburn EH . Telomerases. Annu Rev Biochem 1992; 61: 113–129.

    Article  CAS  PubMed  Google Scholar 

  3. Hodes RJ, Hathcock KS, Weng NP . Telomeres in T and B cells. Nat Rev Immunol 2002; 2: 699–706.

    Article  CAS  PubMed  Google Scholar 

  4. Weng NP, Hathcock KS, Hodes RJ . Regulation of telomere length and telomerase in T and B cells: a mechanism for maintaining replicative potential. Immunity 1998; 9: 151–157.

    Article  CAS  PubMed  Google Scholar 

  5. Luiten RM, Pene J, Yssel H, Spits H . Ectopic hTERT expression extends the life span of human CD4+ helper and regulatory T-cell clones and confers resistance to oxidative stress-induced apoptosis. Blood 2003; 101: 4512–4519.

    Article  CAS  PubMed  Google Scholar 

  6. Hooijberg E, Ruizendaal JJ, Snijders PJ, Kueter EW, Walboomers JM, Spits H . Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase. J Immunol 2000; 165: 4239–4245.

    Article  CAS  PubMed  Google Scholar 

  7. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–352.

    Article  CAS  PubMed  Google Scholar 

  8. Vaziri H, Benchimol S . Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 1998; 8: 279–282.

    Article  CAS  PubMed  Google Scholar 

  9. Yang J, Chang E, Cherry AM, Bangs CD, Oei Y, Bodnar A et al. Human endothelial cell life extension by telomerase expression. J Biol Chem 1999; 274: 26141–26148.

    Article  CAS  PubMed  Google Scholar 

  10. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ . Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396: 84–88.

    Article  CAS  PubMed  Google Scholar 

  11. Ohara T, Koyama K, Kusunoki Y, Hayashi T, Tsuyama N, Kubo Y et al. Memory functions and death proneness in three CD4+CD45RO+ human T cell subsets. J Immunol 2002; 169: 39–48.

    Article  CAS  PubMed  Google Scholar 

  12. Akbar AN, Beverley PC, Salmon M . Will telomere erosion lead to a loss of T-cell memory? Nat Rev Immunol 2004; 4: 737–743.

    Article  CAS  PubMed  Google Scholar 

  13. Melendez LV, Hunt RD, Daniel MD, Garcia FG, Fraser CE . Herpesvirus saimiri. II. Experimentally induced malignant lymphoma in primates. Lab Anim Care 1969; 19: 378–386.

    CAS  PubMed  Google Scholar 

  14. Fickenscher H, Fleckenstein B . Herpesvirus saimiri. Philos Trans R Soc Lond B Biol Sci 2001; 356: 545–567.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fleckenstein B, Wolf H . Purification and properties of herpesvirus saimiri DNA. Virology 1974; 58: 55–64.

    Article  CAS  PubMed  Google Scholar 

  16. Biesinger B, Müller-Fleckenstein I, Simmer B, Lang G, Wittmann S, Platzer E et al. Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proc Natl Acad Sci USA 1992; 89: 3116–3119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Jung JU, Trimble JJ, King NW, Biesinger B, Fleckenstein BW, Desrosiers RC . Identification of transforming genes of subgroup A and C strains of herpesvirus saimiri. Proc Natl Acad Sci USA 1991; 88: 7051–7055.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Biesinger B, Tsygankov AY, Fickenscher H, Emmrich F, Fleckenstein B, Bolen JB et al. The product of the herpesvirus saimiri open reading frame 1 (tip) interacts with T cell-specific kinase p56lck in transformed cells. J Biol Chem 1995; 270: 4729–4734.

    Article  CAS  PubMed  Google Scholar 

  19. Fickenscher H, Biesinger B, Knappe A, Wittmann S, Fleckenstein B . Regulation of the herpesvirus saimiri oncogene stpC, similar to that of T-cell activation genes, in growth-transformed human T lymphocytes. J Virol 1996; 70: 6012–6019.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Knappe A, Hiller C, Thurau M, Wittmann S, Hofmann H, Fleckenstein B et al. The superantigen-homologous viral immediate-early gene ie14/vsag in herpesvirus saimiri-transformed human T cells. J Virol 1997; 71: 9124–9133.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Duboise SM, Guo J, Czajak S, Desrosiers RC, Jung JU . STP and Tip are essential for herpesvirus saimiri oncogenicity. J Virol 1998; 72: 1308–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Harnack U, Lehmann C, Matthes E, Pecher G . Up-regulation of telomerase activity in herpesvirus saimiri immortalized human T-lymphocytes. Anticancer Res 2001; 21: 3969–3972.

    CAS  PubMed  Google Scholar 

  23. Hiller C, Wittmann S, Slavin S, Fickenscher H . Functional long-term thymidine kinase suicide gene expression in human T cells using a herpesvirus saimiri vector. Gene Therapy 2000; 7: 664–674.

    Article  CAS  PubMed  Google Scholar 

  24. Stevenson AJ, Frolova-Jones E, Hall KT, Kinsey SE, Markham AF, Whitehouse A et al. A herpesvirus saimiri-based gene therapy vector with potential for use in cancer immunotherapy. Cancer Gene Ther 2000; 7: 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  25. Frolova-Jones EA, Ensser A, Stevenson AJ, Kinsey SE, Meredith DM . Stable marker gene transfer into human bone marrow stromal cells and their progenitors using novel herpesvirus saimiri-based vectors. J Hematother Stem Cell Res 2000; 9: 573–581.

    Article  CAS  PubMed  Google Scholar 

  26. Knappe A, Feldmann G, Dittmer U, Meinl E, Nisslein T, Wittmann S et al. Herpesvirus saimiri-transformed macaque T cells are tolerated and do not cause lymphoma after autologous reinfusion. Blood 2000; 95: 3256–3261.

    CAS  PubMed  Google Scholar 

  27. Stevenson AJ, Clarke D, Meredith DM, Kinsey SE, Whitehouse A, Bonifer C . Herpesvirus saimiri-based gene delivery vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitro. Gene Therapy 2000; 7: 464–471.

    Article  CAS  PubMed  Google Scholar 

  28. Wieser C, Stumpf D, Grillhösl C, Lengenfelder D, Gay S, Fleckenstein B et al. Regulated and constitutive expression of anti-inflammatory cytokines by nontransforming herpesvirus saimiri vectors. Gene Therapy 2005; 12: 395–406.

    Article  CAS  PubMed  Google Scholar 

  29. Griffiths RA, Boyne JR, Whitehouse A . Herpesvirus saimiri-based gene delivery vectors. Curr Gene Ther 2006; 6: 1–15.

    Article  CAS  PubMed  Google Scholar 

  30. Macnab S, White R, Hiscox J, Whitehouse A . Production of an infectious herpesvirus saimiri-based episomally maintained amplicon system. J Biotechnol 2008; 134: 287–296.

    Article  CAS  PubMed  Google Scholar 

  31. Grassmann R, Dengler C, Müller-Fleckenstein I, Fleckenstein B, McGuire K, Dokhelar MC et al. Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a herpesvirus saimiri vector. Proc Natl Acad Sci USA 1989; 86: 3351–3355.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Court DL, Sawitzke JA, Thomason LC . Genetic engineering using homologous recombination. Annu Rev Genet 2002; 36: 361–388.

    Article  CAS  PubMed  Google Scholar 

  33. Mittrücker HW, Müller-Fleckenstein I, Fleckenstein B, Fleischer B . CD2-mediated autocrine growth of herpes virus saimiri-transformed human T lymphocytes. J Exp Med 1992; 176: 909–913.

    Article  PubMed  Google Scholar 

  34. Knappe A, Hör S, Wittmann S, Fickenscher H . Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J Virol 2000; 74: 3881–3887.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wiese N, Tsygankov AY, Klauenberg U, Bolen JB, Fleischer B, Bröker BM . Selective activation of T cell kinase p56lck by Herpesvirus saimiri protein tip. J Biol Chem 1996; 271: 847–852.

    Article  CAS  PubMed  Google Scholar 

  36. Birkmann A, Mahr K, Ensser A, Yaguboglu S, Titgemeyer F, Fleckenstein B et al. Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8.1. J Virol 2001; 75: 11583–11593.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ensser A, Pfinder A, Müller-Fleckenstein I, Fleckenstein B . The URNA genes of herpesvirus saimiri (strain C488) are dispensable for transformation of human T cells in vitro. J Virol 1999; 73: 10551–10555.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tischer BK, von Einem J, Kaufer B, Osterrieder N . Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 2006; 40: 191–197.

    Article  CAS  PubMed  Google Scholar 

  39. Tischer BK, Smith G, Osterrieder N . En Passant Mutagenesis—A two step markerless Red recombination system. In: Braman J (ed.), In vitro Mutagenesis Protocols. Humana Press Inc.: New York, NY, USA, 2009, in press.

    Google Scholar 

  40. Fickenscher H, Fleckenstein B . Growth-transformation of human T cells. Methods Microbiol 2002; 32: 657–692.

    Article  Google Scholar 

  41. Yamanashi Y, Mori S, Yoshida M, Kishimoto T, Inoue K, Yamamoto T et al. Selective expression of a protein-tyrosine kinase, p56lyn, in hematopoietic cells and association with production of human T-cell lymphotropic virus type I. Proc Natl Acad Sci USA 1989; 86: 6538–6542.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Gonzalez-Suarez E, Samper E, Ramirez A, Flores JM, Martin-Caballero J, Jorcano JL et al. Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J 2001; 20: 2619–2630.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Dong CK, Masutomi K, Hahn WC . Telomerase: regulation, function and transformation. Crit Rev Oncol Hematol 2005; 54: 85–93.

    Article  PubMed  Google Scholar 

  44. Rufer N, Migliaccio M, Antonchuk J, Humphries RK, Roosnek E, Lansdorp PM . Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential. Blood 2001; 98: 597–603.

    Article  CAS  PubMed  Google Scholar 

  45. Greenberg RA, O'Hagan RC, Deng H, Xiao Q, Hann SR, Adams RR et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 1999; 18: 1219–1226.

    Article  CAS  PubMed  Google Scholar 

  46. Ulaner GA, Hu JF, Vu TH, Giudice LC, Hoffman AR . Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts. Cancer Res 1998; 58: 4168–4172.

    CAS  PubMed  Google Scholar 

  47. Weng NP . Regulation of telomerase expression in human lymphocytes. Springer Semin Immunopathol 2002; 24: 23–33.

    Article  CAS  PubMed  Google Scholar 

  48. Migliaccio M, Amacker M, Just T, Reichenbach P, Valmori D, Cerottini JC et al. Ectopic human telomerase catalytic subunit expression maintains telomere length but is not sufficient for CD8+ T lymphocyte immortalization. J Immunol 2000; 165: 4978–4984.

    Article  CAS  PubMed  Google Scholar 

  49. Ouellette MM, Aisner DL, Savre-Train I, Wright WE, Shay JW . Telomerase activity does not always imply telomere maintenance. Biochem Biophys Res Commun 1999; 254: 795–803.

    Article  CAS  PubMed  Google Scholar 

  50. Counter CM, Hahn WC, Wei W, Caddle SD, Beijersbergen RL, Lansdorp PM et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc Natl Acad Sci USA 1998; 95: 14723–14728.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Pawelec G . Hypothesis: loss of telomerase inducibility and subsequent replicative senescence in cultured human T cells is a result of altered costimulation. Mech Ageing Dev 2000; 121: 181–185.

    Article  CAS  PubMed  Google Scholar 

  52. Brinkmann MM, Schulz TF . Regulation of intracellular signalling by the terminal membrane proteins of members of the gammaherpesvirinae. J Gen Virol 2006; 87: 1047–1074.

    Article  CAS  PubMed  Google Scholar 

  53. Alberter B, Ensser A . Histone modification pattern of the T-cellular herpesvirus saimiri genome in latency. J Virol 2007; 81: 2524–2530.

    Article  CAS  PubMed  Google Scholar 

  54. Muyrers JP, Zhang Y, Testa G, Stewart AF . Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 1999; 27: 1555–1557.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Birnboim HC, Doly J . A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979; 7: 1513–1523.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  57. Atha DH, Miller K, Sanow AD, Xu J, Hess JL, Wu OC et al. High-throughput analysis of telomerase by capillary electrophoresis. Electrophoresis 2003; 24: 109–114.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant to HF from Wilhelm Sander-Stiftung, Neustadt/Donau, Germany, by an initial fellowship to TT by the German Academic Exchange Service (DAAD), Bonn, Germany and, in part, by the Research Center Grant SFB 617 A24 to HF, and the Excellence Center Inflammation at Interfaces (Kiel). In addition, AE was supported, in part, by DFG EN423-2/1 and Research Center Grant SFB 796 and a grant by the Wilhelm Sander-Stiftung. We thank Dr Marco Migliaccio (Lausanne) for providing a functional hTERT construct, Dr Mirko Kummer (Erlangen) for cloning the PGK-driven hTERT expression cassette, Dr Karsten Tischer (Berlin) for providing the reagents needed for en passant mutagenesis and Dr Pierre van der Bruggen (Ludwig Institute of Cancer Research, Brussels) for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Fickenscher.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toptan, T., Ensser, A. & Fickenscher, H. Rhadinovirus vector-derived human telomerase reverse transcriptase expression in primary T cells. Gene Ther 17, 653–661 (2010). https://doi.org/10.1038/gt.2010.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.3

Keywords

This article is cited by

Search

Quick links