Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HLA Class I and II alleles, heterozygosity and HLA-KIR interactions are associated with rates of genital HSV shedding and lesions

Abstract

Variation at HLA and KIR loci is associated with the severity of viral infections. To assess associations of genital HSV-2 infection with human HLA and KIR genetic loci, we measured the frequencies of genital herpes simplex virus (HSV) DNA detection and of genital lesions in HSV-2 seropositive persons. We followed 267 HSV-2 seropositive persons who collected daily genital swabs and recorded lesions for 30 days. All persons were laboratory-documented as HIV-seronegative, and all were Caucasian by self-report. HSV detection rate and lesion frequency were compared by genotype using Poisson regression. Overall, HSV was detected on 19.1% of days and lesions on 11.6% of days. The presence of HLA-A*01 was directly associated with HSV detection frequency, whereas the presence of HLA-C*12 was inversely associated with HSV detection frequency. The presence of HLA-A*01 was directly associated with lesion rate, while HLA-A*26, -C*01 and -DQB1*0106 were associated with decreased lesions. We observed an interaction between the absence of both 2DS4del and HLA-Bw4 and higher lesion rate. Heterozygosity of HLA was also associated with reduced lesion frequency. Immune control of genital HSV infection relies on multiple interacting immunogenetic elements, including epistatic interactions between HLA and KIR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sancho-Shimizu V, Perez de Diego R, Jouanguy E, Zhang SY, Casanova JL . Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol 2011; 1: 487–496.

    Article  CAS  Google Scholar 

  2. Orange JS . Natural killer cell deficiency. J Allergy Clin Immunol 2013; 132: 515–525 quiz 26.

    Article  CAS  Google Scholar 

  3. Bashirova AA, Martin MP, McVicar DW, Carrington M . The killer immunoglobulin-like receptor gene cluster: tuning the genome for defense. Annu Rev Genomics Hum Genet 2006; 7: 277–300.

    Article  CAS  Google Scholar 

  4. Tronstein E, Johnston C, Huang ML, Selke S, Magaret A, Warren T et al. Genital shedding of herpes simplex virus among symptomatic and asymptomatic persons with HSV-2 infection. JAMA 2011; 305: 1441–1449.

    Article  CAS  Google Scholar 

  5. Yunis EJ, Larsen CE, Fernandez-Vina M, Awdeh ZL, Romero T, Hansen JA et al. Inheritable variable sizes of DNA stretches in the human MHC: conserved extended haplotypes and their fragments or blocks. Tissue Antigens 2003; 62: 1–20.

    Article  CAS  Google Scholar 

  6. Benedetti JK, Zeh J, Corey L . Clinical reactivation of genital herpes simplex virus infection decreases in frequency over time. Ann Intern Med 1999; 131: 14–20.

    Article  CAS  Google Scholar 

  7. Schacker T, Zeh J, Hu HL, Hill E, Corey L . Frequency of symptomatic and asymptomatic herpes simplex virus type 2 reactivations among human immunodeficiency virus-infected men. J Infect Dis 1998; 178: 1616–1622.

    Article  CAS  Google Scholar 

  8. Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 1995; 375: 411–415.

    Article  CAS  Google Scholar 

  9. Neumann J, Eis-Hubinger AM, Koch N . Herpes simplex virus type 1 targets the MHC class II processing pathway for immune evasion. J Immunol 2003; 171: 3075–3083.

    Article  CAS  Google Scholar 

  10. Lekstrom-Himes JA, Hohman P, Warren T, Wald A, Nam JM, Simonis T et al. Association of major histocompatibility complex determinants with the development of symptomatic and asymptomatic genital herpes simplex virus type 2 infections. J Infect Dis 1999; 179: 1077–1085.

    Article  CAS  Google Scholar 

  11. Moraru M, Cisneros E, Gomez-Lozano N, de Pablo R, Portero F, Canizares M et al. Host genetic factors in susceptibility to herpes simplex type 1 virus infection: contribution of polymorphic genes at the interface of innate and adaptive immunity. J Immunol 2012; 188: 4412–4420.

    Article  CAS  Google Scholar 

  12. Samandary S, Kridane-Miledi H, Sandoval JS, Choudhury Z, Langa-Vives F, Spencer D et al. Associations of HLA-A, HLA-B and HLA-C alleles frequency with prevalence of herpes simplex virus infections and diseases across global populations: implication for the development of an universal CD8+ T-cell epitope-based vaccine. Hum Immunol 2014; 75: 715–729.

    Article  CAS  Google Scholar 

  13. Bamne M, Wood J, Chowdari K, Watson AM, Celik C, Mansour H et al. Evaluation of HLA polymorphisms in relation to schizophrenia risk and infectious exposure. Schizophr Bull 2012; 38: 1149–1154.

    Article  Google Scholar 

  14. Seppanen M, Lokki ML, Timonen T, Lappalainen M, Jarva H, Jarvinen A et al. Complement C4 deficiency and HLA homozygosity in patients with frequent intraoral herpes simplex virus type 1 infections. Clin Infect Dis 2001; 33: 1604–1607.

    Article  CAS  Google Scholar 

  15. Kallio-Laine K, Seppanen M, Aittoniemi J, Kautiainen H, Seppala I, Valtonen V et al. HLA-DRB1*01 allele and low plasma immunoglobulin G1 concentration may predispose to herpes-associated recurrent lymphocytic meningitis. Hum Immunol 2010; 71: 179–181.

    Article  CAS  Google Scholar 

  16. Casanova JL . Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci USA 2015; 112: E7128–E7137.

    CAS  PubMed  Google Scholar 

  17. Feinberg MB, Ahmed R . Born this way? Understanding the immunological basis of effective HIV control. Nat Immunol 2012; 13: 632–634.

    Article  CAS  Google Scholar 

  18. McKiernan SM, Hagan R, Curry M, McDonald GS, Kelly A, Nolan N et al. Distinct MHC class I and II alleles are associated with hepatitis C viral clearance, originating from a single source. Hepatology 2004; 40: 108–114.

    Article  CAS  Google Scholar 

  19. Estefania E, Gomez-Lozano N, Portero F, de Pablo R, Solis R, Sepulveda S et al. Influence of KIR gene diversity on the course of HSV-1 infection: resistance to the disease is associated with the absence of KIR2DL2 and KIR2DS2. Tissue Antigens 2007; 70: 34–41.

    Article  CAS  Google Scholar 

  20. Bjorkstrom NK, Svensson A, Malmberg KJ, Eriksson K, Ljunggren HG . Characterization of natural killer cell phenotype and function during recurrent human HSV-2 infection. PLoS One 2011; 6: e27664.

    Article  Google Scholar 

  21. Laing KJ, Dong L, Sidney J, Sette A, Koelle DM . Immunology in the Clinic Review Series; focus on host responses: T cell responses to herpes simplex viruses. Clin Exp Immunol 2012; 167: 47–58.

    Article  CAS  Google Scholar 

  22. Srivastava R, Khan AA, Huang J, Nesburn AB, Wechsler SL, BenMohamed L . A herpes simplex virus type 1 human asymptomatic CD8+ T-cell epitopes-based vaccine protects against ocular herpes in a ‘Humanized’ HLA transgenic rabbit model. Invest Ophthalmol Vis Sci 2015; 56: 4013–4028.

    Article  CAS  Google Scholar 

  23. Khan AA, Srivastava R, Chentoufi AA, Geertsema R, Thai NT, Dasgupta G et al. Therapeutic immunization with a mixture of herpes simplex virus 1 glycoprotein D-derived ‘asymptomatic’ human CD8+ T-cell epitopes decreases spontaneous ocular shedding in latently infected HLA transgenic rabbits: association with low frequency of local PD-1+ TIM-3+ CD8+ exhausted T cells. J Virol 2015; 89: 6619–6632.

    Article  CAS  Google Scholar 

  24. Srivastava R, Khan AA, Spencer D, Vahed H, Lopes PP, Thai NT et al. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice against ocular herpes. J Immunol 2015; 194: 2232–2248.

    Article  CAS  Google Scholar 

  25. Khan AA, Srivastava R, Spencer D, Garg S, Fremgen D, Vahed H et al. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol 2015; 89: 3776–3792.

    Article  CAS  Google Scholar 

  26. Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 2013; 340: 1237874.

    Article  Google Scholar 

  27. van der Veken LT, Diez Campelo M, van der Hoorn MA, Hagedoorn RS, van Egmond HM, van Bergen J et al. Functional analysis of killer Ig-like receptor-expressing cytomegalovirus-specific CD8+ T cells. J Immunol 2009; 182: 92–101.

    Article  CAS  Google Scholar 

  28. Elahi S, Dinges WL, Lejarcegui N, Laing KJ, Collier AC, Koelle DM et al. Protective HIV-specific CD8+ T cells evade Treg cell suppression. Nat Med 2011; 17: 989–995.

    Article  CAS  Google Scholar 

  29. Tigges MA, Leng S, Johnson DC, Burke RL . Human herpes simplex virus (HSV)-specific CD8+ CTL clones recognize HSV-2-infected fibroblasts after treatment with IFN-gamma or when virion host shutoff functions are disabled. J Immunol 1996; 156: 3901–3910.

    CAS  PubMed  Google Scholar 

  30. Elboim M, Grodzovski I, Djian E, Wolf DG, Mandelboim O . HSV-2 specifically down regulates HLA-C expression to render HSV-2-infected DCs susceptible to NK cell killing. PLoS Pathog 2013; 9: e1003226.

    Article  CAS  Google Scholar 

  31. Seppanen M, Lokki ML, Lappalainen M, Hiltunen-Back E, Rovio AT, Kares S et al. Mannose-binding lectin 2 gene polymorphism in recurrent herpes simplex virus 2 infection. Hum Immunol 2009; 70: 218–221.

    Article  CAS  Google Scholar 

  32. Yang CA, Raftery MJ, Hamann L, Guerreiro M, Grutz G, Haase D et al. Association of TLR3-hyporesponsiveness and functional TLR3 L412F polymorphism with recurrent Herpes labialis. Hum Immunol 2012; 73: 844–851.

    Article  CAS  Google Scholar 

  33. Bochud PY, Magaret AS, Koelle DM, Aderem A, Wald A . Polymorphisms in toll-like receptor 2 are associated with increased viral shedding and lesional rate in patients with genital HSV-2 infection. J Infect Dis 2007; 196: 505–509.

    Article  CAS  Google Scholar 

  34. Koelle DM, Magaret A, Warren T, Schellenberg GD, Wald A . APOE genotype is associated with oral herpetic lesions but not genital or oral herpes simplex virus shedding. Sex Transm Infect 2010; 86: 202–206.

    Article  Google Scholar 

  35. Svensson A, Bergin A-MH, Lowhagen G-B, Tunback P, Bellner L, Padyukov L et al. A 3'-untranslated region polymorphism in the TBX21 gene encoding T-bet is a risk factor for genital herpes simplex virus type 2 infection in humans. J Gen Virol 2008; 89: 2262–2268.

    Article  CAS  Google Scholar 

  36. Kriesel JD, Jones BB, Matsunami N, Patel MK St, Pierre CA, Kurt-Jones EA et al. C21orf91 genotypes correlate with herpes simplex labialis (cold sore) frequency: description of a cold sore susceptibility gene. J Infect Dis 2011; 204: 1654–1662.

    Article  CAS  Google Scholar 

  37. Bradley DT, Bourke TW, Fairley DJ, Borrow R, Shields MD, Young IS et al. Genetic susceptibility to invasive meningococcal disease: MBL2 structural polymorphisms revisited in a large case-control study and a systematic review. Int J Immunogenet 2012; 39: 328–337.

    Article  CAS  Google Scholar 

  38. Mombo LE, Lu CY, Ossari S, Bedjabaga I, Sica L, Krishnamoorthy R et al. Mannose-binding lectin alleles in sub-Saharan Africans and relation with susceptibility to infections. Genes Immun 2003; 4: 362–367.

    Article  CAS  Google Scholar 

  39. Jha AN, Sundaravadivel P, Singh VK, Pati SS, Patra PK, Kremsner PG et al. MBL2 variations and malaria susceptibility in Indian populations. Infect Immun 2014; 82: 52–61.

    Article  Google Scholar 

  40. Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002; 359: 727–732.

    Article  CAS  Google Scholar 

  41. Magaret AS, Johnston C, Wald A . Use of the designation ‘shedder’ in mucosal detection of herpes simplex virus DNA involving repeated sampling. Sex Transm Infect 2009; 85: 270–275.

    Article  CAS  Google Scholar 

  42. Wald A, Zeh J, Selke S, Ashley RL, Corey L . Virologic characteristics of subclinical and symptomatic genital herpes infections. N Engl J Med 1995; 333: 770–775.

    Article  CAS  Google Scholar 

  43. Ashley RL, Militoni J, Lee F, Nahmias A, Corey L . Comparison of Western blot (immunoblot) and glycoprotein G-specific immunodot enzyme assay for detecting antibodies to herpes simplex virus types 1 and 2 in human sera. J Clin Microbiol 1988; 26: 662–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Magaret AS, Wald A, Huang ML, Selke S, Corey L . Optimizing PCR positivity criterion for detection of herpes simplex virus DNA on skin and mucosa. J Clin Microbiol 2007; 45: 1618–1620.

    Article  CAS  Google Scholar 

  45. Ryncarz AJ, Goddard J, Wald A, Huang ML, Roizman B, Corey L . Development of a high-throughput quantitative assay for detecting herpes simplex virus DNA in clinical samples. J Clin Microbiol 1999; 37: 1941–1947.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. John M, Heckerman D, James I, Park LP, Carlson JM, Chopra A et al. Adaptive interactions between HLA and HIV-1: highly divergent selection imposed by HLA class I molecules with common supertype motifs. J Immunol 2010; 184: 4368–4377.

    Article  CAS  Google Scholar 

  47. Hill WG . Estimation of linkage disequilibrium in randomly mating populations. Heredity 1974; 33: 229–239.

    Article  CAS  Google Scholar 

  48. Ardlie KG, Kruglyak L, Seielstad M . Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002; 3: 299–309.

    Article  CAS  Google Scholar 

  49. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat B 1995; 57: 289–300.

    Google Scholar 

  50. Li J, Ji L . Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005; 95: 221–227.

    Article  CAS  Google Scholar 

  51. Ripley BD . Pattern Recognition and Neural Networks. Cambridge University Press: Cambridge, UK, 1996.

    Book  Google Scholar 

  52. Breiman L, Friedman JH, Olshen RA, Stone CJ . Classification and Regression Trees. Chapman & Hall: Boca Raton, FL, USA, 1984.

    Google Scholar 

  53. Gao X, Nelson GW, Karacki P, Martin MP, Phair J, Kaslow R et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N Engl J Med 2001; 344: 1668–1675.

    Article  CAS  Google Scholar 

  54. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 2002; 31: 429–434.

    Article  CAS  Google Scholar 

  55. Chazara O, Xiong S, Moffett A . Maternal KIR and fetal HLA-C: a fine balance. J Leukoc Biol 2011; 90: 703–716.

    Article  CAS  Google Scholar 

  56. Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 2004; 305: 872–874.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the participants and the contributing labs, including the University of Washington Clinical Virology lab for HSV Western Blots and HIV serology, the University of Washington Molecular Virology lab for HSV PCR, and the Koelle lab for specimen handling. We are also grateful to Stacy Selke at the Virology Research Clinic for managing and compiling the subsequent clinical and laboratory results. The work was funded by NIH grants P01AI030731 and R01AI094019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M Koelle.

Ethics declarations

Competing interests

ASM is a consultant for AiCuris and Immune Design. DMK is co-inventor on patents concerning HSV-2 vaccine candidates that stimulate T-cell responses, receives contract funding from Sanofi Pasteur, Merck, Immune Design, and Admedus, and is a consultant to EISAI, Inc. AW is co-inventor on patents concerning HSV-2 vaccine candidates that stimulate T-cell responses, receives grant funding from NIH, clinical trial contracts from Genocea and Vical and is a consultant for AiCuris, and GSK. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magaret, A., Dong, L., John, M. et al. HLA Class I and II alleles, heterozygosity and HLA-KIR interactions are associated with rates of genital HSV shedding and lesions. Genes Immun 17, 412–418 (2016). https://doi.org/10.1038/gene.2016.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2016.42

This article is cited by

Search

Quick links