Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Diubiquitin (Ubd) is a susceptibility gene for virus-triggered autoimmune diabetes in rats

Abstract

Genetic studies of type 1 diabetes (T1D) have been advanced by comparative analysis of multiple susceptible and resistant rat strains with a permissive class II MHC haplotype, RT1u. LEW.1WR1 (but not resistant LEW.1W or WF) rats are susceptible to T1D induced by a TLR3 agonist polyinosinic:polycytidylic acid followed by infection with parvovirus. We have mapped genetic loci for virus-induced T1D susceptibility, identifying a major susceptibility locus (Iddm37) near the MHC. The Iddm37 homologs on mouse and human chromosomes are also diabetes linked. We report that a major effect gene within Iddm37 is diubiquitin (Ubd). Gene expression profiling of pancreatic lymph nodes in susceptible and resistant rats during disease induction showed differences in Ubd transcript abundance. The LEW.1WR1 Ubd promoter allele leads to higher inducible levels of UBD than that of LEW.1W or WF. Using zinc-finger nucleases , we deleted a segment of the LEW.1WR1 Ubd gene and eliminated its expression. UBD-deficient rats show substantially reduced diabetes after viral infection. Complementary studies show that there may be another diabetes gene in addition to Ubd in the Iddm37 interval. These data prove that Ubd is a diabetes susceptibility gene, providing insight into the interplay of multiple genes and environmental factors in T1D susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. van Belle TL, Coppieters KT, von Herrath MG . Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91: 79–118.

    Article  CAS  Google Scholar 

  2. Polychronakos C, Li Q . Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet 2011; 12: 781–792.

    Article  CAS  Google Scholar 

  3. Trucco M . Gene-environment interaction in type 1 diabetes mellitus. Endocrinol Nutr 2009; 56 (suppl 4): 56–59.

    Article  Google Scholar 

  4. Concannon P, Rich SS, Nepom GT . Genetics of type 1A diabetes. N Engl J Med 2009; 360: 1646–1654.

    Article  CAS  Google Scholar 

  5. Winkler C, Krumsiek J, Lempainen J, Achenbach P, Grallert H, Giannopoulou E et al. A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes Immun 2012; 13: 549–555.

    Article  CAS  Google Scholar 

  6. Butter F, Davison L, Viturawong T, Scheibe M, Vermeulen M, Todd JA et al. Proteome-wide analysis of disease-associated SNPs that show allele-specific transcription factor binding. PLoS Genet 2012; 8: e1002982.

    Article  CAS  Google Scholar 

  7. Bach JF . The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347: 911–920.

    Article  Google Scholar 

  8. Ghazarian L, Diana J, Simoni Y, Beaudoin L, Lehuen A . Prevention or acceleration of type 1 diabetes by viruses. Cell Mol Life Sci 2013; 70: 239–255.

    Article  CAS  Google Scholar 

  9. Oikarinen S, Martiskainen M, Tauriainen S, Huhtala H, Ilonen J, Veijola R et al. Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes 2011; 60: 276–279.

    Article  CAS  Google Scholar 

  10. Stene LC, Oikarinen S, Hyoty H, Barriga KJ, Norris JM, Klingensmith G et al. Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY). Diabetes 2010; 59: 3174–3180.

    Article  CAS  Google Scholar 

  11. Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG . The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 2009; 52: 1143–1151.

    Article  CAS  Google Scholar 

  12. Roychoudhuri R, Hirahara K, Mousavi K, Clever D, Klebanoff CA, Bonelli M et al. BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature 2013; 498: 506–510.

    Article  CAS  Google Scholar 

  13. D’Alise AM, Ergun A, Hill JA, Mathis D, Benoist C . A cluster of coregulated genes determines TGF-beta-induced regulatory T-cell (Treg) dysfunction in NOD mice. Proc Natl Acad Sci USA 2011; 108: 8737–8742.

    Article  Google Scholar 

  14. Zhang L, Gianani R, Nakayama M, Liu E, Kobayashi M, Baschal E et al. Type 1 diabetes: chronic progressive autoimmune disease. Novartis Found Symp 2008; 292: 85–94 discussion 94-8, 122-9, 202-3.

    Article  CAS  Google Scholar 

  15. Baschal EE, Aly TA, Jasinski JM, Steck AK, Johnson KN, Noble JA et al. The frequent and conserved DR3-B8-A1 extended haplotype confers less diabetes risk than other DR3 haplotypes. Diabetes Obes Metab 2009; 11: 25–30.

    Article  CAS  Google Scholar 

  16. Aumeunier A, Grela F, Ramadan A, Pham Van L, Bardel E, Gomez Alcala A et al. Systemic Toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice. PLoS One 2010; 5 e11484.

    Article  Google Scholar 

  17. Mordes J, Poussier P, Rossini AA, Blankenhorn EP, Greiner DL . Rat models of type 1 diabetes: Genetics, environment, and autoimmunity. In: Shafrir E, (ed.). Animal Models of Diabetes: Frontiers in Research. CRC Press: Boca Raton, FL, USA, 2007.

    Google Scholar 

  18. Mordes J, Serreze DV, Greiner DL, Rossini AA . ‘Animal models of autoimmune diabetes mellitus’. In: LeRoith D, Taylor SI, Olefsky JM, (eds). Diabetes Mellitus. A Fundamental and Clinical Text. Lippincott Williams and Wilkins: NY, USA, 2004: 591–610.

    Google Scholar 

  19. Chase HP, Butler-Simon N, Garg SK, Hayward A, Klingensmith GJ, Hamman RF et al. Cyclosporine A for the treatment of new-onset insulin-dependent diabetes mellitus. Pediatrics 1990; 85: 241–245.

    CAS  PubMed  Google Scholar 

  20. Parving HH, Tarnow L, Nielsen FS, Rossing P, Mandrup-Poulsen T, Osterby R et al. Cyclosporine nephrotoxicity in type 1 diabetic patients. A 7-year follow-up study. Diabetes Care 1999; 22: 478–483.

    Article  CAS  Google Scholar 

  21. Wherrett DK, Daneman D . Prevention of type 1 diabetes. Pediatr Clin North Am 2011; 58: 1257–1270, xi.

    Article  Google Scholar 

  22. Mordes JP, Bortell R, Blankenhorn EP, Rossini AA, Greiner DL . Rat models of type 1 diabetes: genetics, environment, and autoimmunity. ILAR J 2004; 45: 278–291.

    Article  CAS  Google Scholar 

  23. Mordes JP, Guberski DL, Leif JH, Woda BA, Flanagan JF, Greiner DL et al. LEW.1WR1 rats develop autoimmune diabetes spontaneously and in response to environmental perturbation. Diabetes 2005; 54: 2727–2733.

    Article  CAS  Google Scholar 

  24. Ellerman KE, Like AA . Susceptibility to diabetes is widely distributed in normal class IIu haplotype rats. Diabetologia 2000; 43: 890–898.

    Article  CAS  Google Scholar 

  25. Blankenhorn EP, Cort L, Greiner DL, Guberski DL, Mordes JP . Virus-induced autoimmune diabetes in the LEW.1WR1 rat requires Iddm14 and a genetic locus proximal to the major histocompatibility complex. Diabetes 2009; 58: 2930–2938.

    Article  CAS  Google Scholar 

  26. Martin AM, Maxson MN, Leif J, Mordes JP, Greiner DL, Blankenhorn EP . Diabetes-prone and diabetes-resistant BB rats share a common major diabetes susceptibility locus, iddm4: additional evidence for a ‘universal autoimmunity locus’ on rat chromosome 4. Diabetes 1999; 48: 2138–2144.

    Article  CAS  Google Scholar 

  27. Martin AM, Blankenhorn EP, Maxson MN, Zhao M, Leif J, Mordes JP et al. Non-major histocompatibility complex-linked diabetes susceptibility loci on chromosomes 4 and 13 in a backcross of the DP-BB/Wor rat to the WF rat. Diabetes 1999; 48: 50–58.

    Article  CAS  Google Scholar 

  28. Blankenhorn EP, Rodemich L, Martin-Fernandez C, Leif J, Greiner DL, Mordes JP . The rat diabetes susceptibility locus Iddm4 and at least one additional gene are required for autoimmune diabetes induced by viral infection. Diabetes 2005; 54: 1233–1237.

    Article  CAS  Google Scholar 

  29. Deruytter N, Boulard O, Garchon HJ . Mapping non-class II H2-linked loci for type 1 diabetes in nonobese diabetic mice. Diabetes 2004; 53: 3323–3327.

    Article  CAS  Google Scholar 

  30. Aly TA, Ide A, Jahromi MM, Barker JM, Fernando MS, Babu SR et al. Extreme genetic risk for type 1A diabetes. Proc Natl Acad Sci USA 2006; 103: 14074–14079.

    Article  CAS  Google Scholar 

  31. Aly TA, Baschal EE, Jahromi MM, Fernando MS, Babu SR, Fingerlin TE et al. Analysis of single nucleotide polymorphisms identifies major type 1A diabetes locus telomeric of the major histocompatibility complex. Diabetes 2008; 57: 770–776.

    Article  CAS  Google Scholar 

  32. Awata T, Guberski DL, Like AA . Genetics of the BB rat: association of autoimmune disorders (diabetes, insulitis, and thyroiditis) with lymphopenia and major histocompatibility complex class II. Endocrinology 1995; 136: 5731–5735.

    Article  CAS  Google Scholar 

  33. Kohoutava M, Gunther E, Stark O . Genetic definition of a further gene region and identification of at least three different histocompatibility genes in the rat major histocompatibility system. Immunogenetics 1980; 11: 483–490.

    Article  CAS  Google Scholar 

  34. Blankenhorn EP, Descipio C, Rodemich L, Cort L, Leif JH, Greiner DL et al. Refinement of the Iddm4 diabetes susceptibility locus reveals TCRVbeta4 as a candidate gene. Ann N Y Acad Sci 2007; 1103: 128–131.

    Article  CAS  Google Scholar 

  35. Hipp MS, Kalveram B, Raasi S, Groettrup M, Schmidtke G . FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol Cell Biol 2005; 25: 3483–3491.

    Article  CAS  Google Scholar 

  36. Lukasiak S, Schiller C, Oehlschlaeger P, Schmidtke G, Krause P, Legler DF et al. Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon. Oncogene 2008; 27: 6068–6074.

    Article  CAS  Google Scholar 

  37. Atkinson MA, Leiter EH . The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 1999; 5: 601–604.

    Article  CAS  Google Scholar 

  38. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 2009; 325: 433.

    Article  CAS  Google Scholar 

  39. Geurts AM, Cost GJ, Remy S, Cui X, Tesson L, Usal C et al. Generation of gene-specific mutated rats using zinc-finger nucleases. Methods Mol Biol 2010; 597: 211–225.

    Article  CAS  Google Scholar 

  40. Geurts AM, Moreno C . Zinc-finger nucleases: new strategies to target the rat genome. Clin Sci (Lond) 2010; 119: 303–311.

    Article  CAS  Google Scholar 

  41. Jacob HJ, Lazar J, Dwinell MR, Moreno C, Geurts AM . Gene targeting in the rat: advances and opportunities. Trends Genet 2010; 26: 510–518.

    Article  CAS  Google Scholar 

  42. Chernova T, Higginson FM, Davies R, Smith AG . B2 SINE retrotransposon causes polymorphic expression of mouse 5-aminolevulinic acid synthase 1 gene. Biochem Biophys Res Commun 2008; 377: 515–520.

    Article  CAS  Google Scholar 

  43. Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 2008; 29: 499–509.

    Article  CAS  Google Scholar 

  44. Bates EE, Ravel O, Dieu MC, Ho S, Guret C, Bridon JM et al. Identification and analysis of a novel member of the ubiquitin family expressed in dendritic cells and mature B cells. Eur J Immunol 1997; 27: 2471–2477.

    Article  CAS  Google Scholar 

  45. Canaan A, Yu X, Booth CJ, Lian J, Lazar I, Gamfi SL et al. FAT10/diubiquitin-like protein-deficient mice exhibit minimal phenotypic differences. Mol Cell Biol 2006; 26: 5180–5189.

    Article  CAS  Google Scholar 

  46. Gong P, Canaan A, Wang B, Leventhal J, Snyder A, Nair V et al. The ubiquitin-like protein FAT10 mediates NF-kappaB activation. J Am Soc Nephrol 2010; 21: 316–326.

    Article  CAS  Google Scholar 

  47. Ebstein F, Lange N, Urban S, Seifert U, Kruger E, Kloetzel PM . Maturation of human dendritic cells is accompanied by functional remodelling of the ubiquitin-proteasome system. Int J Biochem Cell Biol 2009; 41: 1205–1215.

    Article  CAS  Google Scholar 

  48. Ebstein F, Lehmann A, Kloetzel PM . The FAT10- and ubiquitin-dependent degradation machineries exhibit common and distinct requirements for MHC class I antigen presentation. Cell Mol Life Sci 2012; 69: 2443–2454.

    Article  CAS  Google Scholar 

  49. Schmidtke G, Kalveram B, Groettrup M . Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett 2009; 583: 591–594.

    Article  CAS  Google Scholar 

  50. Yokoi N, Komeda K, Wang HY, Yano H, Kitada K, Saitoh Y et al. Cblb is a major susceptibility gene for rat type 1 diabetes mellitus. Nat Genet 2002; 31: 391–394.

    Article  CAS  Google Scholar 

  51. Yokoi N, Fujiwara Y, Wang HY, Kitao M, Hayashi C, Someya T et al. Identification and functional analysis of CBLB mutations in type 1 diabetes. Biochem Biophys Res Commun 2008; 368: 37–42.

    Article  CAS  Google Scholar 

  52. Baschal EE, Sarkar SA, Boyle TA, Siebert JC, Jasinski JM, Grabek KR et al. Replication and further characterization of a Type 1 diabetes-associated locus at the telomeric end of the major histocompatibility complex. J Diabetes 2011; 3: 238–247.

    Article  CAS  Google Scholar 

  53. Kohoutavá M, Günther E, Stark O . Genetic definition of a further gene region and identification of at least three different histocompatibility genes in the rat major histocompatibility system. Immunogenetics 1980; 11: 483–490.

    Article  Google Scholar 

  54. Mordes JP, Leif J, Novak S, DeScipio C, Greiner DL, Blankenhorn EP . The iddm4 locus segregates with diabetes susceptibility in congenic WF.iddm4 rats. Diabetes 2002; 51: 3254–3262.

    Article  CAS  Google Scholar 

  55. Institute of Laboratory Animal Research CoLS, National Research Council. Guide for the Care and Use of Laboratory Animals. The National Academies Press: Washington, DC, USA, 1996.

  56. Mordes JP, Cort L, Norowski E, Leif J, Fuller JM, Lernmark A et al. Analysis of the rat Iddm14 diabetes susceptibility locus in multiple rat strains: identification of a susceptibility haplotype in the Tcrb-V locus. Mamm Genome 2009; 20: 162–169.

    Article  CAS  Google Scholar 

  57. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J . RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 2006; 22: 2825–2827.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the American Diabetes Association (grants 7-08-RA-106 to JPM, 7-09-BS-18 to EPB, and 7-12-BS-075 to MJH); the National Institutes of Health (grants R21AI088480 to EPB, R01AI078713 to MJH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E P Blankenhorn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cort, L., Habib, M., Eberwine, R. et al. Diubiquitin (Ubd) is a susceptibility gene for virus-triggered autoimmune diabetes in rats. Genes Immun 15, 168–175 (2014). https://doi.org/10.1038/gene.2013.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.72

Keywords

This article is cited by

Search

Quick links