Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Vitamins and plant ingredients

Homocysteine-reducing B vitamins and ischemic heart disease: a separate-sample Mendelian randomization analysis

Abstract

Background/objectives:

Observationally, homocysteine is positively associated with ischemic heart disease (IHD) and unhealthy lipids; folate and vitamin B12, which reduce homocysteine, are associated with lower IHD risk and healthy lipids. Randomized controlled trials have shown no benefits of folate and vitamin B12 for IHD. To clarify the role of these potential targets of intervention in IHD we assessed how genetically determined homocysteine, folate and vitamin-B12-affected IHD and lipids.

Subjects/methods:

Separate-sample instrumental variable analysis with genetic instruments, that is, Mendelian randomization, was used to obtain unconfounded estimates (based on strongly related single-nucleotide polymorphisms (SNPs)) using CARDIoGRAMplusC4D, a large coronary artery disease/myocardial infarction (CAD/MI) case (n=64 374)–control (n=130 681) study with extensive genotyping, and the Global Lipids Genetics Consortium Results (n=196 475).

Results:

Homocysteine was unrelated to CAD/MI (odds ratio (OR) 1.07 per log-transformed s.d., 95% confidence interval (CI) 0.96 to 1.19) based on 14 SNPs, as was folate (OR 1.18 per s.d., 95% CI 0.80 to 1.75) based on rs153734, and vitamin B12 (OR 0.98 per log-transformed s.d., 95% CI 0.85 to 1.14) based on rs602662, rs9473555, rs526934 and rs11254363. Homocysteine and folate were not clearly associated with lipids, vitamin B12 was associated with higher inverse normal transformed low-density lipoprotein cholesterol (0.07, 95% CI 0.02 to 0.12) and triglycerides (0.05, 95% CI 0.004 to 0.09).

Conclusions:

Our findings do not corroborate the observed positive association of homocysteine or negative associations of folate and vitamin B12 with CAD/MI. Vitamin B12 might be associated with an unfavorable lipid profile.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ezzati M, Obermeyer Z, Tzoulaki I, Mayosi BM, Elliott P, Leon DA . Contributions of risk factors and medical care to cardiovascular mortality trends. Nat Rev Cardiol 2015; 12: 508–530.

    Article  Google Scholar 

  2. Wong IO, Cowling BJ, Leung GM, Schooling CM . Age-period-cohort projections of ischaemic heart disease mortality by socio-economic position in a rapidly transitioning Chinese population. PLoS One 2013; 8: e61495.

    Article  CAS  Google Scholar 

  3. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002; 288: 2015–2022.

    Article  Google Scholar 

  4. Real JT, Martinez-Hervas S, Garcia-Garcia AB, Chaves FJ, Civera M, Ascaso JF et al. Association of C677T polymorphism in MTHFR gene, high homocysteine and low HDL cholesterol plasma values in heterozygous familial hypercholesterolemia. J Atheroscler Thromb 2009; 16: 815–820.

    Article  CAS  Google Scholar 

  5. de Luis DA, Fernandez N, Arranz ML, Aller R, Izaola O, Romero E . Total homocysteine levels relation with chronic complications of diabetes, body composition, and other cardiovascular risk factors in a population of patients with diabetes mellitus type 2. J Diabetes Complications 2005; 19: 42–46.

    Article  CAS  Google Scholar 

  6. Vanizor Kural B, Orem A, Cimsit G, Uydu HA, Yandi YE, Alver A . Plasma homocysteine and its relationships with atherothrombotic markers in psoriatic patients. Clin Chim Acta 2003; 332: 23–30.

    Article  CAS  Google Scholar 

  7. Yang HT, Lee M, Hong KS, Ovbiagele B, Saver JL . Efficacy of folic acid supplementation in cardiovascular disease prevention: an updated meta-analysis of randomized controlled trials. Eur J Intern Med 2012; 23: 745–754.

    Article  CAS  Google Scholar 

  8. Debreceni B, Debreceni L . The role of homocysteine-lowering B-vitamins in the primary prevention of cardiovascular disease. Cardiovasc Ther 2014; 32: 130–138.

    Article  CAS  Google Scholar 

  9. Study of the Effectiveness of Additional Reductions in C Homocysteine Collaborative G Study of the Effectiveness of Additional Reductions in C, Armitage JM, Study of the Effectiveness of Additional Reductions in C, Bowman L, Study of the Effectiveness of Additional Reductions in C, Clarke RJ, Study of the Effectiveness of Additional Reductions in C, Wallendszus K et al. Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors: a randomized trial. JAMA 2010; 303: 2486–2494.

    Article  Google Scholar 

  10. Rafnsson SB, Saravanan P, Bhopal RS, Yajnik CS . Is a low blood level of vitamin B12 a cardiovascular and diabetes risk factor? A systematic review of cohort studies. Eur J Nutr 2011; 50: 97–106.

    Article  CAS  Google Scholar 

  11. National Institute of Health https://ods.od.nih.gov/factsheets/Folate-HealthProfessional/.

  12. Choi JH, Yates Z, Veysey M, Heo YR, Lucock M . Contemporary issues surrounding folic Acid fortification initiatives. Prev Nutr Food Sci 2014; 19: 247–260.

    Article  Google Scholar 

  13. Scotland could add folic acid to flour. Available at http://www.bbc.com/news/uk-scotland-35377163.

  14. Watanabe F . Vitamin B12 sources and bioavailability. Exp Biol Med (Maywood) 2007; 232: 1266–1274.

    Article  CAS  Google Scholar 

  15. Shorter KR, Felder MR, Vrana PB . Consequences of dietary methyl donor supplements: Is more always better? Prog Biophys Mol Biol 2015; 118: 14–20.

    Article  CAS  Google Scholar 

  16. Carmel R . Mandatory fortification of the food supply with cobalamin: an idea whose time has not yet come. J Inherit Metab Dis 2011; 34: 67–73.

    Article  CAS  Google Scholar 

  17. Allen LH, Rosenberg IH, Oakley GP, Omenn GS . Considering the case for vitamin B12 fortification of flour. Food Nutr Bull 2010; 31: S36–S46.

    Article  Google Scholar 

  18. Rimm EB, Willett WC, Hu FB, Sampson L, Colditz GA, Manson JE et al. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA 1998; 279: 359–364.

    Article  CAS  Google Scholar 

  19. Ishihara J, Iso H, Inoue M, Iwasaki M, Okada K, Kita Y et al. Intake of folate, vitamin B6 and vitamin B12 and the risk of CHD: the Japan Public Health Center-Based Prospective Study Cohort I. J Am Coll Nutr 2008; 27: 127–136.

    Article  CAS  Google Scholar 

  20. Voutilainen S, Rissanen TH, Virtanen J, Lakka TA, Salonen JT . Kuopio Ischemic Heart Disease Risk Factor S. Low dietary folate intake is associated with an excess incidence of acute coronary events: The Kuopio Ischemic Heart Disease Risk Factor Study. Circulation 2001; 103: 2674–2680.

    Article  CAS  Google Scholar 

  21. Semmler A, Moskau S, Grigull A, Farmand S, Klockgether T, Smulders Y et al. Plasma folate levels are associated with the lipoprotein profile: a retrospective database analysis. Nutr J 2010; 9: 31.

    Article  Google Scholar 

  22. Ziakka S, Rammos G, Kountouris S, Doulgerakis C, Karakasis P, Kourvelou C et al. The effect of vitamin B6 and folate supplements on plasma homocysteine and serum lipids levels in patients on regular hemodialysis. Int Urol Nephrol 2001; 33: 559–562.

    Article  CAS  Google Scholar 

  23. Olszewski AJ, Szostak WB, Bialkowska M, Rudnicki S, McCully KS . Reduction of plasma lipid and homocysteine levels by pyridoxine, folate, cobalamin, choline, riboflavin, and troxerutin in atherosclerosis. Atherosclerosis 1989; 75: 1–6.

    Article  CAS  Google Scholar 

  24. Mahalle N, Kulkarni MV, Garg MK, Naik SS . Vitamin B12 deficiency and hyperhomocysteinemia as correlates of cardiovascular risk factors in Indian subjects with coronary artery disease. J Cardiol 2013; 61: 289–294.

    Article  Google Scholar 

  25. Adaikalakoteswari A, Jayashri R, Sukumar N, Venkataraman H, Pradeepa R, Gokulakrishnan K et al. Vitamin B12 deficiency is associated with adverse lipid profile in Europeans and Indians with type 2 diabetes. Cardiovasc Diabetol 2014; 13: 129.

    Article  Google Scholar 

  26. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G . Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 2008; 27: 1133–1163.

    Article  Google Scholar 

  27. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 2006; 354: 1567–1577.

    Article  CAS  Google Scholar 

  28. Toole JF, Malinow MR, Chambless LE, Spence JD, Pettigrew LC, Howard VJ et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 2004; 291: 565–575.

    Article  CAS  Google Scholar 

  29. Albert CM, Cook NR, Gaziano JM, Zaharris E, MacFadyen J, Danielson E et al. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial. JAMA 2008; 299: 2027–2036.

    Article  CAS  Google Scholar 

  30. van Dijk SC, Enneman AW, Swart KM, van Wijngaarden JP, Ham AC, Brouwer-Brolsma EM et al. Effects of 2-year vitamin B12 and folic acid supplementation in hyperhomocysteinemic elderly on arterial stiffness and cardiovascular outcomes within the B-PROOF trial. J Hypertens 2015; 33: 1897–1906. discussion 906.

    Article  CAS  Google Scholar 

  31. Marti-Carvajal AJ, Sola I, Lathyris D, Salanti G . Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 2009 CD006612.

  32. Asemi Z, Karamali M, Esmaillzadeh A . Metabolic response to folate supplementation in overweight women with polycystic ovary syndrome: a randomized double-blind placebo-controlled clinical trial. Mol Nutr Food Res 2014; 58: 1465–1473.

    Article  CAS  Google Scholar 

  33. McGregor D, Shand B, Lynn K . A controlled trial of the effect of folate supplements on homocysteine, lipids and hemorheology in end-stage renal disease. Nephron 2000; 85: 215–220.

    Article  CAS  Google Scholar 

  34. Villa P, Perri C, Suriano R, Cucinelli F, Panunzi S, Ranieri M et al. L-folic acid supplementation in healthy postmenopausal women: effect on homocysteine and glycolipid metabolism. J Clin Endocrinol Metab 2005; 90: 4622–4629.

    Article  CAS  Google Scholar 

  35. Wang L, Li H, Zhou Y, Jin L, Liu J . Low-dose B vitamins supplementation ameliorates cardiovascular risk: a double-blind randomized controlled trial in healthy Chinese elderly. Eur J Nutr 2015; 54: 455–464.

    Article  CAS  Google Scholar 

  36. Hughes CF, Ward M, Hoey L, McNulty H . Vitamin B12 and ageing: current issues and interaction with folate. Ann Clin Biochem 2013; 50: 315–329.

    Article  Google Scholar 

  37. Everett BM, Pradhan AD, Solomon DH, Paynter N, Macfadyen J, Zaharris E et al. Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis. Am Heart J 2013; 166: 199–207 e15.

    Article  Google Scholar 

  38. Ridker PM . Closing the loop on inflammation and atherothrombosis: why perform the cirt and cantos trials? Trans Am Clin Climatol Assoc 2013; 124: 174–190.

    PubMed  PubMed Central  Google Scholar 

  39. van Meurs JB, Pare G, Schwartz SM, Hazra A, Tanaka T, Vermeulen SH et al. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am J Clin Nutr 2013; 98: 668–676.

    Article  CAS  Google Scholar 

  40. Tanaka T, Scheet P, Giusti B, Bandinelli S, Piras MG, Usala G et al. Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am J Hum Genet 2009; 84: 477–482.

    Article  CAS  Google Scholar 

  41. Hazra A, Kraft P, Lazarus R, Chen C, Chanock SJ, Jacques P et al. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Hum Mol Genet 2009; 18: 4677–4687.

    Article  CAS  Google Scholar 

  42. Consortium CAD, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013; 45: 25–33.

    Article  Google Scholar 

  43. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011; 43: 333–338.

    Article  CAS  Google Scholar 

  44. Global Lipids Genetics C, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S et al. Discovery and refinement of loci associated with lipid levels. Nat Genet 2013; 45: 1274–1283.

    Article  Google Scholar 

  45. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015; 47: 1121–1130.

    Article  CAS  Google Scholar 

  46. Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG . Consortium E-I. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol 2015; 30: 543–552.

    Article  Google Scholar 

  47. Fieller EC . Some problems in interval estimation. J R Stat Soc Series B Stat Methodol 1954; 16: 175–185.

    Google Scholar 

  48. Bowden J, Davey Smith G, Haycock PC, Burgess S . Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol 2016; 40: 304–314.

    Article  Google Scholar 

  49. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 2014; 46: 1173–1186.

    Article  CAS  Google Scholar 

  50. Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS ONE 2012; 7: e51954.

    Article  CAS  Google Scholar 

  51. Wellcome Trust Case Control C. Genome-wide association study of 14000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  52. Chu AY, Workalemahu T, Paynter NP, Rose LM, Giulianini F, Tanaka T et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum Mol Genet 2013; 22: 1895–1902.

    Article  CAS  Google Scholar 

  53. Pare G, Chasman DI, Parker AN, Zee RR, Malarstig A, Seedorf U et al. Novel associations of CPS1, MUT, NOX4, and DPEP1 with plasma homocysteine in a healthy population: a genome-wide evaluation of 13 974 participants in the Women's Genome Health Study. Circ Cardiovasc Genet 2009; 2: 142–150.

    Article  CAS  Google Scholar 

  54. Higgins JP, White IR, Anzures-Cabrera J . Meta-analysis of skewed data: combining results reported on log-transformed or raw scales. Stat Med 2008; 27: 6072–6092.

    Article  Google Scholar 

  55. Zee RY, Mora S, Cheng S, Erlich HA, Lindpaintner K, Rifai N et al. Homocysteine, 5,10-methylenetetrahydrofolate reductase 677C>T polymorphism, nutrient intake, and incident cardiovascular disease in 24,968 initially healthy women. Clin Chem 2007; 53: 845–851.

    Article  CAS  Google Scholar 

  56. Graham I . Homocysteine in health and disease. Ann Intern Med 1999; 131: 387–388.

    Article  CAS  Google Scholar 

  57. Refsum H, Nurk E, Smith AD, Ueland PM, Gjesdal CG, Bjelland I et al. The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr 2006; 136: 1731S–1740SS.

    Article  CAS  Google Scholar 

  58. Badri SN, Vanithakumari G, Malini T . Studies on methotrexate effects on testicular steroidogenesis in rats. Endocr Res 2000; 26: 247–262.

    Article  CAS  Google Scholar 

  59. Sagaster P, Flamm J, Micksche M, Fritz E, Donner G, Ludwig H . Maximal androgen blockade in combination with methotrexate for treatment of metastatic prostate cancer. J Cancer Res Clin Oncol 1996; 122: 171–176.

    Article  CAS  Google Scholar 

  60. Korman LB . Treatment of prostate cancer. Clin Pharm 1989; 8: 412–424.

    CAS  PubMed  Google Scholar 

  61. Verhaar MC, Wever RM, Kastelein JJ, van Loon D, Milstien S, Koomans HA et al. Effects of oral folic acid supplementation on endothelial function in familial hypercholesterolemia. A randomized placebo-controlled trial. Circulation 1999; 100: 335–338.

    Article  CAS  Google Scholar 

  62. Olthof MR, van Vliet T, Verhoef P, Zock PL, Katan MB . Effect of homocysteine-lowering nutrients on blood lipids: results from four randomised, placebo-controlled studies in healthy humans. PLoS Med 2005; 2: e135.

    Article  Google Scholar 

  63. Hirsch S, Pia De la Maza M, Yanez P, Glasinovic A, Petermann M, Barrera G et al. Hyperhomocysteinemia and endothelial function in young subjects: effects of vitamin supplementation. Clin Cardiol 2002; 25: 495–501.

    Article  Google Scholar 

  64. Freeman G, Cowling BJ, Schooling CM . Power and sample size calculations for Mendelian randomization studies using one genetic instrument. Int J Epidemiol 2013; 42: 1157–1163.

    Article  Google Scholar 

  65. Schooling CM, Freeman G, Cowling BJ . Mendelian randomization and estimation of treatment efficacy for chronic diseases. Am J Epidemiol 2013; 177: 1128–1133.

    Article  CAS  Google Scholar 

  66. Collin SM, Metcalfe C, Palmer TM, Refsum H, Lewis SJ, Smith GD et al. The causal roles of vitamin B(12) and transcobalamin in prostate cancer: can Mendelian randomization analysis provide definitive answers? Int J Mol Epidemiol Genet 2011; 2: 316–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rothman KJ, Gallacher JE, Hatch EE . Why representativeness should be avoided. Int J Epidemiol 2013; 42: 1012–1014.

    Article  Google Scholar 

  68. Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA 2015; 313: 1325–1335.

    Article  CAS  Google Scholar 

  69. Taylor AE, Davies NM, Ware JJ, Vanderweele T, Smith GD, Munafo MR . Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates. Econ Hum Biol 2014; 13: 99–106.

    Article  Google Scholar 

  70. Tchetgen Tchetgen EJ, Walter S, Glymour MM . Commentary: building an evidence base for mendelian randomization studies: assessing the validity and strength of proposed genetic instrumental variables. Int J Epidemiol 2013; 42: 328–331.

    Article  Google Scholar 

  71. Kalin MF, Zumoff B . Sex hormones and coronary disease: a review of the clinical studies. Steroids 1990; 55: 330–352.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Schooling.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Disclaimer

This analysis of publicly available data does not require ethical approval.

Supplementary Information accompanies this paper on European Journal of Clinical Nutrition website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Schooling, C. Homocysteine-reducing B vitamins and ischemic heart disease: a separate-sample Mendelian randomization analysis. Eur J Clin Nutr 71, 267–273 (2017). https://doi.org/10.1038/ejcn.2016.246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2016.246

This article is cited by

Search

Quick links