Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncolytic virotherapy for osteosarcoma using midkine promoter-regulated adenoviruses

Abstract

Oncolytic virotherapy using adenoviruses has potential therapeutic benefits for a variety of cancers. We recently developed MOA5, a tumor-specific midkine promoter-regulated oncolytic vector based on human adenovirus serotype 5 (Ad5). We modified the binding tropism of MOA5 by replacing the cell-binding domain of the Ad5 fiber knob with that from another adenovirus serotype 35 (Ad35); the resulting vector was designated MOA35. Here we evaluated the therapeutic efficacies of MOA5 and MOA35 for human osteosarcoma. Midkine mRNA expression and its promoter activity was significantly high in five human osteosarcoma cell lines, but was restricted in normal cells. Very low levels of adenovirus cellular receptor coxsackievirus/adenovirus receptor (CAR) (Ad5 receptor) expression were observed in MNNG-HOS and MG-63 cells, whereas high levels of CAR expression were seen in the other osteosarcoma cell lines. By contrast, CD46 (Ad35 receptor) was highly expressed in all osteosarcoma cell lines. Infectivity and in vitro cytocidal effect of MOA35 was significantly enhanced in MNNG-HOS and MG-63 cells compared with MOA5, although the cytocidal effects of MOA5 were sometimes higher in high CAR-expressing cell lines. In MG-63 xenograft models, MOA35 significantly enhanced antitumor effects compared with MOA5. Our findings indicate that MOA5 and MOA35 allow tailored virotherapy and facilitate more effective treatments for osteosarcoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Marina N, Gebhardt M, Teot L, Gorlick R . Biology and therapeutic advances for pediatric osteosarcoma. Oncologist 2004; 9: 422–441.

    Article  PubMed  Google Scholar 

  2. Tan ML, Choong PF, Dass CR . Osteosarcoma: conventional treatment vs gene therapy. Cancer Biol Ther 2009; 8: 106–117.

    Article  CAS  PubMed  Google Scholar 

  3. Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G . Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev 2006; 32: 423–436.

    Article  PubMed  Google Scholar 

  4. Alemany R, Balague C, Curiel DT . Replicative adenoviruses for cancer therapy. Nat Biotechnol 2000; 18: 723–727.

    Article  CAS  PubMed  Google Scholar 

  5. Liu TC, Kirn D . Gene therapy progress and prospects cancer: oncolytic viruses. Gene Therapy 2008; 15: 877–884.

    Article  CAS  PubMed  Google Scholar 

  6. Aridome K, Tsutsui J, Takao S, Kadomatsu K, Ozawa M, Aikou T et al. Increased midkine gene expression in human gastrointestinal cancers. Jpn J Cancer Res 1995; 86: 655–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garver RI Jr., Radford DM, Donis-Keller H, Wick MR, Milner PG . Midkine and pleiotrophin expression in normal and malignant breast tissue. Cancer 1994; 74: 1584–1590.

    Article  PubMed  Google Scholar 

  8. Kadomatsu K, Muramatsu T . Midkine and pleiotrophin in neural development and cancer. Cancer Lett 2004; 204: 127–143.

    Article  CAS  PubMed  Google Scholar 

  9. Tsutsui J, Kadomatsu K, Matsubara S, Nakagawara A, Hamanoue M, Takao S et al. A new family of heparin-binding growth/differentiation factors: increased midkine expression in Wilms’ tumor and other human carcinomas. Cancer Res 1993; 53: 1281–1285.

    CAS  PubMed  Google Scholar 

  10. Garver RI Jr, Chan CS, Milner PG . Reciprocal expression of pleiotrophin and midkine in normal versus malignant lung tissues. Am J Respir Cell Mol Biol 1993; 9: 463–466.

    Article  CAS  PubMed  Google Scholar 

  11. Kaname T, Kadomatsu K, Aridome K, Yamashita S, Sakamoto K, Ogawa M et al. The expression of truncated MK in human tumors. Biochem Biophys Res Commun 1996; 219: 256–260.

    Article  CAS  PubMed  Google Scholar 

  12. Kato M, Shinozawa T, Kato S, Awaya A, Terada T . Increased midkine expression in hepatocellular carcinoma. Arch Pathol Lab Med 2000; 124: 848–852.

    CAS  PubMed  Google Scholar 

  13. Maeda S, Shinchi H, Kurahara H, Mataki Y, Noma H, Maemura K et al. Clinical significance of midkine expression in pancreatic head carcinoma. Br J Cancer 2007; 97: 405–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyauchi M, Shimada H, Kadomatsu K, Muramatsu T, Matsubara S, Ikematsu S et al. Frequent expression of midkine gene in esophageal cancer suggests a potential usage of its promoter for suicide gene therapy. Jpn J Cancer Res 1999; 90: 469–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muramatsu H, Muramatsu T . Purification of recombinant midkine and examination of its biological activities: functional comparison of new heparin binding factors. Biochem Biophys Res Commun 1991; 177: 652–658.

    Article  CAS  PubMed  Google Scholar 

  16. Mashour GA, Ratner N, Khan GA, Wang HL, Martuza RL, Kurtz A . The angiogenic factor midkine is aberrantly expressed in NF1-deficient Schwann cells and is a mitogen for neurofibroma-derived cells. Oncogene 2001; 20: 97–105.

    Article  CAS  PubMed  Google Scholar 

  17. Choudhuri R, Zhang HT, Donnini S, Ziche M, Bicknell R . An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis. Cancer Res 1997; 57: 1814–1819.

    CAS  PubMed  Google Scholar 

  18. Owada K, Sanjo N, Kobayashi T, Mizusawa H, Muramatsu H, Muramatsu T et al. Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J Neurochem 1999; 73: 2084–2092.

    CAS  PubMed  Google Scholar 

  19. Qi M, Ikematsu S, Ichihara-Tanaka K, Sakuma S, Muramatsu T, Kadomatsu K . Midkine rescues Wilms’ tumor cells from cisplatin-induced apoptosis: regulation of Bcl-2 expression by Midkine. J Biochem 2000; 127: 269–277.

    Article  CAS  PubMed  Google Scholar 

  20. Kojima S, Inui T, Muramatsu H, Kimura T, Sakakibara S, Muramatsu T . Midkine is a heat and acid stable polypeptide capable of enhancing plasminogen activator activity and neurite outgrowth extension. Biochem Biophys Res Commun 1995; 216: 574–581.

    Article  CAS  PubMed  Google Scholar 

  21. Kadomatsu K, Hagihara M, Akhter S, Fan QW, Muramatsu H, Muramatsu T . Midkine induces the transformation of NIH3T3 cells. Br J Cancer 1997; 75: 354–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kubo S, Kawasaki Y, Yamaoka N, Tagawa M, Kasahara N, Terada N et al. Complete regression of human malignant mesothelioma xenografts following local injection of midkine promoter-driven oncolytic adenovirus. J Gene Med 2010; 12: 681–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  24. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997; 94: 3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hemmi S, Geertsen R, Mezzacasa A, Peter I, Dummer R . The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 1998; 9: 2363–2373.

    Article  CAS  PubMed  Google Scholar 

  26. Ranki T, Hemminki A . Serotype chimeric human adenoviruses for cancer gene therapy. Viruses 2010; 2: 2196–2212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hemminki A, Kanerva A, Liu B, Wang M, Alvarez RD, Siegal GP et al. Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression. Cancer Res 2003; 63: 847–853.

    CAS  PubMed  Google Scholar 

  28. Kim M, Zinn KR, Barnett BG, Sumerel LA, Krasnykh V, Curiel DT et al. The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of primary adenovirus receptors on tumour cells. Eur J Cancer 2002; 38: 1917–1926.

    Article  CAS  PubMed  Google Scholar 

  29. Fuxe J, Liu L, Malin S, Philipson L, Collins VP, Pettersson RF . Expression of the coxsackie and adenovirus receptor in human astrocytic tumors and xenografts. Int J Cancer 2003; 103: 723–729.

    Article  CAS  PubMed  Google Scholar 

  30. Gaggar A, Shayakhmetov DM, Liszewski MK, Atkinson JP, Lieber A . Localization of regions in CD46 that interact with adenovirus. J Virol 2005; 79: 7503–7513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thorsteinsson L, O'Dowd GM, Harrington PM, Johnson PM . The complement regulatory proteins CD46 and CD59, but not CD55, are highly expressed by glandular epithelium of human breast and colorectal tumour tissues. Apmis 1998; 106: 869–878.

    Article  CAS  PubMed  Google Scholar 

  32. Yu L, Shimozato O, Li Q, Kawamura K, Ma G, Namba M et al. Adenovirus type 5 substituted with type 11 or 35 fiber structure increases its infectivity to human cells enabling dual gene transfer in CD46-dependent and -independent manners. Anticancer Res 2007; 27: 2311–2316.

    CAS  PubMed  Google Scholar 

  33. Shashkova EV, May SM, Barry MA . Characterization of human adenovirus serotypes 5, 6, 11, and 35as anticancer agents. Virology 2009; 394: 311–320.

    Article  CAS  PubMed  Google Scholar 

  34. Yu L, Takenobu H, Shimozato O, Kawamura K, Nimura Y, Seki N et al. Increased infectivity of adenovirus type 5 bearing type 11 or type 35 fibers to human esophageal and oral carcinoma cells. Oncol Rep 2005; 14: 831–835.

    PubMed  Google Scholar 

  35. Sova P, Ren XW, Ni S, Bernt KM, Mi J, Kiviat N et al. A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Mol Ther 2004; 9: 496–509.

    Article  CAS  PubMed  Google Scholar 

  36. Kinugasa N, Higashi T, Nouso K, Nakatsukasa H, Kobayashi Y, Ishizaki M et al. Expression of membrane cofactor protein (MCP, CD46) in human liver diseases. Br J Cancer 1999; 80: 1820–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takagi-Kimura M, Yamano T, Tamamoto A, Okamura N, Okamura H, Hashimoto-Tamaoki T et al. Enhanced antitumor efficacy of fiber-modified, midkine promoter-regulated oncolytic adenovirus in human malignant mesothelioma. Cancer Sci 2013; 104: 1433–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–74.

    Article  CAS  PubMed  Google Scholar 

  39. Shayakhmetov DM . Virus infection recognition and early innate responses to non-enveloped viral vectors. Viruses 2010; 2: 244–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carette JE, Graat HC, Schagen FH, Mastenbroek DC, Rots MG, Haisma HJ et al. A conditionally replicating adenovirus with strict selectivity in killing cells expressing epidermal growth factor receptor. Virology 2007; 361: 56–67.

    Article  CAS  PubMed  Google Scholar 

  41. Graat HC, van Beusechem VW, Schagen FH, Witlox MA, Kleinerman ES, Helder MN et al. Intravenous administration of the conditionally replicative adenovirus Ad5-Delta24RGD induces regression of osteosarcoma lung metastases. Mol Cancer 2008; 7: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Graat HC, Witlox MA, Schagen FH, Kaspers GJ, Helder MN, Bras J et al. Different susceptibility of osteosarcoma cell lines and primary cells to treatment with oncolytic adenovirus and doxorubicin or cisplatin. Br J Cancer 2006; 94: 1837–1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Witlox AM, Van Beusechem VW, Molenaar B, Bras H, Schaap GR, Alemany R et al. Conditionally replicative adenovirus with tropism expanded towards integrins inhibits osteosarcoma tumor growth in vitro and in vivo. Clin Cancer Res 2004; 10 (1 Pt 1): 61–67.

    Article  CAS  PubMed  Google Scholar 

  44. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12.

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R . A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 2001; 7: 120–126.

    CAS  PubMed  Google Scholar 

  46. Hasei J, Sasaki T, Tazawa H, Osaki S, Yamakawa Y, Kunisada T et al. Dual programmed cell death pathways induced by p53 transactivation overcome resistance to oncolytic adenovirus in human osteosarcoma cells. Mol Cancer Ther 2013; 12: 314–325.

    Article  CAS  PubMed  Google Scholar 

  47. Li C, Cheng Q, Liu J, Wang B, Chen D, Liu Y . Potent growth-inhibitory effect of TRAIL therapy mediated by double-regulated oncolytic adenovirus on osteosarcoma. Mol Cell Biochem 2012; 364: 337–344.

    Article  CAS  PubMed  Google Scholar 

  48. Li G, Kawashima H, Ogose A, Ariizumi T, Xu Y, Hotta T et al. Efficient virotherapy for osteosarcoma by telomerase-specific oncolytic adenovirus. J Cancer Res Clin Oncol 2011; 137: 1037–1051.

    Article  PubMed  Google Scholar 

  49. Sasaki T, Tazawa H, Hasei J, Kunisada T, Yoshida A, Hashimoto Y et al. Preclinical evaluation of telomerase-specific oncolytic virotherapy for human bone and soft tissue sarcomas. Clin Cancer Res 2011; 17: 1828–1838.

    Article  CAS  PubMed  Google Scholar 

  50. Horikawa Y, Wang Y, Nagano S, Kamizono J, Ikeda M, Komiya S et al. Assessment of an altered E1B promoter on the specificity and potency of triple-regulated conditionally replicating adenoviruses: implications for the generation of ideal m-CRAs. Cancer Gene Ther 2011; 18: 724–733.

    Article  CAS  PubMed  Google Scholar 

  51. Adusumilli PS, Stiles BM, Chan MK, Mullerad M, Eisenberg DP, Ben-Porat L et al. Imaging and therapy of malignant pleural mesothelioma using replication-competent herpes simplex viruses. J Gene Med 2006; 8: 603–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naik JD, Twelves CJ, Selby PJ, Vile RG, Chester JD . Immune recruitment and therapeutic synergy: keys to optimizing oncolytic viral therapy? Clin Cancer Res 2011; 17: 4214–4224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Joint-Use Research Facilities from Hyogo College of Medicine for their technical assistance. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (25460484 and 23591973), and a Grant-in-Aid for Researchers from Hyogo College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kubo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi-Kimura, M., Yamano, T., Tagawa, M. et al. Oncolytic virotherapy for osteosarcoma using midkine promoter-regulated adenoviruses. Cancer Gene Ther 21, 126–132 (2014). https://doi.org/10.1038/cgt.2014.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.7

Keywords

This article is cited by

Search

Quick links