Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immune Recovery

Assessment of TREC, KREC and telomere length in long-term survivors after allogeneic HSCT: the role of GvHD and graft source and evidence for telomere homeostasis in young recipients

Abstract

Reconstitution of the adaptive immune system following allogeneic hematopoietic stem cell transplantation is crucial for beneficial outcome and is affected by several factors, such as GvHD and graft source. The impact of these factors on immune reconstitution has been thoroughly investigated during the early phase after transplantation. However, little is known about their long-term effect. Similarly, leukocyte telomere length (TL) shortening has been reported shortly after transplantation. Nevertheless, whether TL shortening continues in long-term aspect is still unsettled. Here, we assessed T-cell receptor excision circle (TREC), kappa deleting recombination excision circle (KREC) and leukocyte TL in recipients and donors several years post transplantation (median 17 years). Our analysis showed that, recipients who received bone marrow (BM) as the graft source have higher levels of both TREC and KREC. Also, chronic GvHD affected TREC levels and TL but not KREC levels. Finally, we show that recipient’s TL was longer than respective donors in a group of young age recipients with high KREC levels. Our results suggest that BM can be beneficial for long-term adaptive immune recovery. We also present supporting evidence for recipient telomere homeostasis, especially in young age recipients, rather than telomere shortening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Copelan EA . Hematopoietic stem-cell transplantation. N Engl j med 2006; 354: 1813–1826.

    Article  CAS  Google Scholar 

  2. Minculescu L, Sengelov H . The role of gamma delta T cells in haematopoietic stem cell transplantation. Scand j immunol 2015; 81: 459–468.

    Article  CAS  Google Scholar 

  3. Chen X, Hale GA, Barfield R, Benaim E, Leung WH, Knowles J et al. Rapid immune reconstitution after a reduced-intensity conditioning regimen and a CD3-depleted haploidentical stem cell graft for paediatric refractory haematological malignancies. Br j haematol 2006; 135: 524–532.

    Article  Google Scholar 

  4. Clave E, Busson M, Douay C, Peffault de Latour R, Berrou J, Rabian C et al. Acute graft-versus-host disease transiently impairs thymic output in young patients after allogeneic hematopoietic stem cell transplantation. Blood 2009; 113: 6477–6484.

    Article  CAS  Google Scholar 

  5. Clave E, Lisini D, Douay C, Giorgiani G, Busson M, Zecca M et al. Thymic function recovery after unrelated donor cord blood or T-cell depleted HLA-haploidentical stem cell transplantation correlates with leukemia relapse. Front immunol 2013; 4: 54.

    Article  Google Scholar 

  6. Hazenberg MD, Otto SA, de Pauw ES, Roelofs H, Fibbe WE, Hamann D et al. T-cell receptor excision circle and T-cell dynamics after allogeneic stem cell transplantation are related to clinical events. Blood 2002; 99: 3449–3453.

    Article  CAS  Google Scholar 

  7. Mensen A, Ochs C, Stroux A, Wittenbecher F, Szyska M, Imberti L et al. Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation. J transl med 2013; 11: 188.

    Article  CAS  Google Scholar 

  8. Douek DC, Vescio RA, Betts MR, Brenchley JM, Hill BJ, Zhang L et al. Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet 2000; 355: 1875–1881.

    Article  CAS  Google Scholar 

  9. Jimenez M, Ercilla G, Martinez C . Immune reconstitution after allogeneic stem cell transplantation with reduced-intensity conditioning regimens. Leukemia 2007; 21: 1628–1637.

    Article  CAS  Google Scholar 

  10. Jimenez M, Martinez C, Ercilla G, Carreras E, Urbano-Ispizua A, Aymerich M et al. Clinical factors influencing T-cell receptor excision circle (TRECs) counts following allogeneic stem cell transplantation in adults. Transplant immunol 2006; 16: 52–59.

    Article  CAS  Google Scholar 

  11. Gaballa A, Sundin M, Stikvoort A, Abumaree M, Uzunel M, Sairafi D et al. T cell receptor excision circle (TREC) monitoring after allogeneic stem cell transplantation; a predictive marker for complications and clinical outcome. Int j mol sci 2016; 17: 1705.

    Article  Google Scholar 

  12. Mensen A, Johrens K, Anagnostopoulos I, Demski S, Oey M, Stroux A et al. Bone marrow T-cell infiltration during acute GVHD is associated with delayed B-cell recovery and function after HSCT. Blood 2014; 124: 963–972.

    Article  CAS  Google Scholar 

  13. Townsley DM, Dumitriu B, Liu D, Biancotto A, Weinstein B, Chen C et al. Danazol treatment for telomere diseases. N Engl j med 2016; 374: 1922–1931.

    Article  CAS  Google Scholar 

  14. Ruella M, Rocci A, Ricca I, Carniti C, Bodoni CL, Ladetto M et al. Comparative assessment of telomere length before and after hematopoietic SCT: role of grafted cells in determining post-transplant telomere status. Bone marrow transplant 2010; 45: 505–512.

    Article  CAS  Google Scholar 

  15. Akiyama M, Hoshi Y, Sakurai S, Yamada H, Yamada O, Mizoguchi H . Changes of telomere length in children after hematopoietic stem cell transplantation. Bone marrow transplant 1998; 21: 167–171.

    Article  CAS  Google Scholar 

  16. Lee J, Kook H, Chung I, Kim H, Park M, Kim C et al. Telomere length changes in patients undergoing hematopoietic stem cell transplantation. Bone marrow transplant 1999; 24: 411–415.

    Article  CAS  Google Scholar 

  17. Rufer N, Brummendorf TH, Chapuis B, Helg C, Lansdorp PM, Roosnek E . Accelerated telomere shortening in hematological lineages is limited to the first year following stem cell transplantation. Blood 2001; 97: 575–577.

    Article  CAS  Google Scholar 

  18. de Pauw ES, Otto SA, Wijnen JT, Vossen JM, van Weel MH, Tanke HJ et al. Long-term follow-up of recipients of allogeneic bone marrow grafts reveals no progressive telomere shortening and provides no evidence for haematopoietic stem cell exhaustion. Br j haematol 2002; 116: 491–496.

    Article  Google Scholar 

  19. Baerlocher GM, Rovo A, Muller A, Matthey S, Stern M, Halter J et al. Cellular senescence of white blood cells in very long-term survivors after allogeneic hematopoietic stem cell transplantation: the role of chronic graft-versus-host disease and female donor sex. Blood 2009; 114: 219–222.

    Article  CAS  Google Scholar 

  20. Sottini A, Ghidini C, Zanotti C, Chiarini M, Caimi L, Lanfranchi A et al. Simultaneous quantification of recent thymic T-cell and bone marrow B-cell emigrants in patients with primary immunodeficiency undergone to stem cell transplantation. Clin immunol 2010; 136: 217–227.

    Article  CAS  Google Scholar 

  21. Cawthon RM . Telomere measurement by quantitative PCR. Nucleic acids res 2002; 30: e47.

    Article  Google Scholar 

  22. Gertow J, Berglund S, Okas M, Uzunel M, Berg L, Karre K et al. Characterization of long-term mixed donor-donor chimerism after double cord blood transplantation. Clin exp immunol 2010; 162: 146–155.

    Article  CAS  Google Scholar 

  23. Storek J, Joseph A, Espino G, Dawson MA, Douek DC, Sullivan KM et al. Immunity of patients surviving 20 to 30 years after allogeneic or syngeneic bone marrow transplantation. Blood 2001; 98: 3505–3512.

    Article  CAS  Google Scholar 

  24. Nakatani K, Imai K, Shigeno M, Sato H, Tezuka M, Okawa T et al. Cord blood transplantation is associated with rapid B-cell neogenesis compared with BM transplantation. Bone marrow transplant 2014; 49: 1155–1161.

    Article  CAS  Google Scholar 

  25. Przybylski GK, Kreuzer KA, Siegert W, Schmidt CA . No recovery of T-cell receptor excision circles (TRECs) after non-myeloablative allogeneic hematopoietic stem cell transplantation is correlated with the onset of GvHD. J appl genet 2007; 48: 397–404.

    Article  Google Scholar 

  26. Storek J, Wells D, Dawson MA, Storer B, Maloney DG . Factors influencing B lymphopoiesis after allogeneic hematopoietic cell transplantation. Blood 2001; 98: 489–491.

    Article  CAS  Google Scholar 

  27. Abrahamsen IW, Somme S, Heldal D, Egeland T, Kvale D, Tjonnfjord GE . Immune reconstitution after allogeneic stem cell transplantation: the impact of stem cell source and graft-versus-host disease. Haematologica 2005; 90: 86–93.

    PubMed  Google Scholar 

  28. Sairafi D, Mattsson J, Uhlin M, Uzunel M . Thymic function after allogeneic stem cell transplantation is dependent on graft source and predictive of long term survival. Clin immunol 2012; 142: 343–350.

    Article  CAS  Google Scholar 

  29. Geyer MB, Jacobson JS, Freedman J, George D, Moore V, van de Ven C et al. A comparison of immune reconstitution and graft-versus-host disease following myeloablative conditioning versus reduced toxicity conditioning and umbilical cord blood transplantation in paediatric recipients. Br j haematol 2011; 155: 218–234.

    Article  Google Scholar 

  30. Ferrara JL, Reddy P . Pathophysiology of graft-versus-host disease. Semin hematol 2006; 43: 3–10.

    Article  CAS  Google Scholar 

  31. Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos M et al. Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance. J immunol methods 2010; 352: 71–80.

    Article  CAS  Google Scholar 

  32. Lin J, Cheon J, Brown R, Coccia M, Puterman E, Aschbacher K et al. Systematic and cell type-specific telomere length changes in subsets of lymphocytes. J immunol res 2016; 2016: 5371050.

    Article  Google Scholar 

  33. Aubert G, Hills M, Lansdorp PM . Telomere length measurement-caveats and a critical assessment of the available technologies and tools. Mutat res 2012; 730: 59–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Swedish research Council, Swedish Society for Childhood cancer and Stockholm county Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Gaballa or M Uhlin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaballa, A., Norberg, A., Stikvoort, A. et al. Assessment of TREC, KREC and telomere length in long-term survivors after allogeneic HSCT: the role of GvHD and graft source and evidence for telomere homeostasis in young recipients. Bone Marrow Transplant 53, 69–77 (2018). https://doi.org/10.1038/bmt.2017.216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2017.216

This article is cited by

Search

Quick links