Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

G-CSF-primed BM for allogeneic SCT: revisited

Abstract

G-SCF-mobilized PBSC (GPB) grafts have a higher cell dose and somewhat more committed progenitor cells than steady-state BM (SBM), resulting in faster engraftment and faster immunological reconstitution. On the other hand, transplant related mortality (TRM), disease-free survival (DFS) and overall survival (OS) are similar both for PB and for BM. In contrast to SBM, G-CSF-primed BM (GBM) grafts stimulate HSC proliferation, increasing cell dose and thus resulting in faster engraftment because of higher cell dose infused, or because of treatment with G-CSF. Furthermore, GBM may induce tolerance and functional modulations in donor hematopoiesis and immunity, further reducing GVHD incidence, which is already lower with SBM compared with GPB grafts. Overall, a growing body of clinical evidence suggests that GBM transplants may share the advantages of GPB transplantations, without the associated increased risk of GVHD, and might be an attractive graft source for allogeneic SCTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thomas ED, Storb R, Clift RA, Fefer A, Johnson L, Neiman PE et al. Bone marrow transplantation. N Engl J Med 1975; 292: 832–843.

    Article  CAS  PubMed  Google Scholar 

  2. Baldomero H, Gratwohl M, Gratwohl A, Tichelli A, Niederwieser D, Madrigal A et al. The EBMT activity survey 2009: trends over the past 5 years. Bone Marrow Transplant 2011; 46: 485–501.

    Article  CAS  PubMed  Google Scholar 

  3. Kessinger A, Armitage JO, Landmark JD, Smith DM, Weisenburger DD . Autologous peripheral hematopoietic stem cell transplantation restores hematopoietic function following marrow ablative therapy. Blood 1988; 71: 723–727.

    CAS  PubMed  Google Scholar 

  4. Elfenbein GJ . Clinical factors contributing to the pace of engraftment after allogeneic and autologous stem cell transplantation: multivariate analyses. In: Abraham NG, Tabilio A, Martelli M, Asano S, Donfransco A (eds). Molecular Biology of Hematopoiesis, Vol. 6. Plenum Press: New York, NY, USA, 1999, pp, 103–111.

    Google Scholar 

  5. Lobo F, Kessinger A, Landmark JD, Smith DM, Weisenburger DD, Wigton RS et al. Addition of peripheral blood stem cells collected without mobilization techniques to transplanted autologous bone marrow did not hasten marrow recovery following myeloablative therapy. Bone Marrow Transplant 1991; 8: 389–392.

    CAS  PubMed  Google Scholar 

  6. Damiani D, Fanin R, Silvestri F, Grimaz S, Infanti L, Geromin A et al. Randomized trial of autologous filgrastim-primed bone marrow transplantation versus filgrastim-mobilized peripheral blood stem cell transplantation in lymphoma patients. Blood 1997; 90: 36–42.

    CAS  PubMed  Google Scholar 

  7. Lowenthal RM, Sullivan S, Parker N, Marsden KA . G-CSF-primed bone marrow cells for autologous transplantation [letter]. Lancet 1996; 347: 1125.

    CAS  PubMed  Google Scholar 

  8. Weisdorf D, Miller J, Verfaillie C, Burns L, Wagner J, Blazar B et al. Cytokineprimed bone marrow stem cells vs. peripheral blood stem cells for autologous transplantation: a randomized comparison of GM-CSF vs. G-CSF. Biol Blood Marrow Transplant 1997; 3: 217–223.

    CAS  PubMed  Google Scholar 

  9. Schwella N, Beyer J, Schwaner I, Heuft HG, Rick O, Huhn D et al. Impact of preleukapheresis cell counts on collection results and correlation of progenitor cell dose with engraftment after high-dose chemotherapy in patients with germ cell cancer. J Clin Oncol 1996; 14: 1114–1121.

    CAS  PubMed  Google Scholar 

  10. Lemoli RM, de Vivo A, Damiani D, Isidori A, Tani M, Bonini A et al. Autologous transplantation of granulocyte colony-stimulating factor primed bone marrow is effective in supporting myeloablative chemotherapy in patient with hematologic malignancies and poor peripheral bloodstem cell mobilization. Blood 2003; 102: 1595–1600.

    CAS  PubMed  Google Scholar 

  11. Elfenbein GJ, Sackstein R . Primed marrow for autologous and allogeneic transplantation: a review comparing primed marrow to mobilized blood and steady-state marrow. Exp Hematol 2004; 32: 327–339.

    CAS  PubMed  Google Scholar 

  12. Elfenbein GJ, Janssen WE, Perkins JB . Relative contributions of marrow microenvironment, growth factors, and stem cells to hematopoiesis in vivo in man: review of results from autologous stem cell transplant trials and laboratory studies at the Moffitt Cancer Center. Ann N Y Acad Sci 1995; 770: 315–338.

    CAS  PubMed  Google Scholar 

  13. Janssen WE, Smilee R, Carter R . Mobilization of peripheral blood stem cells (PBSC): Comparing cyclophosphamide and growth factor based regimens. Prog Clin Biol Res 1994; 389: 429–439.

    CAS  PubMed  Google Scholar 

  14. Janssen WE, Elfenbein GJ, Fields KK . Comparison of cell collections and rates of post-transplant granulocyte recovery when G-CSF and GM-CSF are used as mobilizers of peripheral blood stem cells for autotransplantation. Autologous Blood and Marrow Transplantation. Proceedings of the Seventh International Symposium. MD Anderson: Arlington, TX, USA, 1995, pp 527–539.

    Google Scholar 

  15. Sheridan WP, Begley CG, Juttner CA, Szer J, To LB, Maher D et al. Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 1992; 339: 640–644.

    CAS  PubMed  Google Scholar 

  16. To LB, Roberts MM, Haylock DN, Dyson PG, Branford AL, Thorp D et al. Comparison of haematological recovery times and supportive care requirements of autologous recovery phase peripheral blood stem cell transplants, autologous bone marrow transplants and allogeneic bone marrow transplants. Bone Marrow Transplant 1992; 9: 277–284.

    CAS  PubMed  Google Scholar 

  17. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001; 344: 175–181.

    CAS  PubMed  Google Scholar 

  18. Bensinger WI, Weaver CH, Appelbaum FR, Rowley S, Demirer T, Sanders J et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony stimulating factor. Blood 1995; 85: 1655–1658.

    CAS  PubMed  Google Scholar 

  19. Schmitz N, Dreger P, Suttorp M, Rohwedder EB, Haferlach T, Löffler H et al. Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony stimulating factor). Blood 1995; 85: 1666–1672.

    CAS  PubMed  Google Scholar 

  20. Korbling M, Przepiorka D, Huh YO, Engel H, van Besien K, Giralt S et al. Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: potential advantage of blood over marrow allograft. Blood 1995; 85: 1659–1665.

    CAS  PubMed  Google Scholar 

  21. Bensinger WI, Clift R, Martin P, Appelbaum FR, Demirer T, Gooley T et al. Allogeneic peripheral blood stem cell transplantation in patients with advanced hematologic malignancies: a retrospective comparison with marrow transplantation. Blood 1996; 88: 2794–2800.

    CAS  PubMed  Google Scholar 

  22. Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med 2012; 367: 1487–1496.

    CAS  PubMed  Google Scholar 

  23. Nagler A, Labopin M, Shimoni A, Mufti GJ, Cornelissen JJ, Blaise D et al. Mobilized peripheral blood stem cells compared with bone marrow from HLA-identical siblings for reduced-intensity conditioning transplantation in acute myeloid leukemia in complete remission: a retrospective analysis from the Acute Leukemia Working Party of EBMT. Eur J Haematol 2012; 89: 206–213.

    PubMed  Google Scholar 

  24. Nagler A, Labopin M, Shimoni A, Niederwieser D, Mufti GJ, Zander AR et al. Mobilized peripheral blood stem cells compared with bone marrow as the stem cell source for unrelated donor allogeneic transplantation with reduced-intensity conditioning in patients with acute myeloid leukemia in complete remission: an analysis from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2012; 18: 1422–1429.

    PubMed  Google Scholar 

  25. Eapen M, Logan BR, Confer DL, Haagenson M, Wagner JE, Weisdorf DJ et al. Peripheral blood grafts from unrelated donors are associated with increased acute and chronic graft-versus-host disease without improved survival. Biol Blood Marrow Transplant 2007; 13: 1461–1468.

    PubMed  PubMed Central  Google Scholar 

  26. Remberger M, Ringden O, Blau IW, Ottinger H, Kremens B, Kiehl MG et al. No difference in graft-versus-host disease, relapse, and survival comparingperipheral stem cells to bone marrow using unrelated donors. Blood 2001; 98: 1739–1745.

    CAS  PubMed  Google Scholar 

  27. Garderet L, Labopin M, Gorin NC, Polge E, Fouillard L, Ehninger GE et al. Patients with acute lymphoblastic leukemia allografted with a matched unrelated donor may have a lower survival with a peripheral blood progenitor cell graft compared to bone marrow. Bone Marrow Transplant 2003; 31: 23–29.

    CAS  PubMed  Google Scholar 

  28. Eapen M, Horowitz MM, Klein JP, Richard EC, Fausto RL, Olle R et al. Higher mortality after allogeneic peripheral-blood transplantation compared with bone marrow in children and adolescents: the Histocompatibility and Alternate Stem Cell Source Working Committee of the International Bone Marrow Transplant Registry. J Clin Oncol 2004; 22: 4872–4880.

    PubMed  Google Scholar 

  29. Schmitz N, Beksac M, Hasenclever D, Bacigalupo A, Ruutu T, Nagler A et al. Transplantation of mobilized peripheral blood cells to HLA-identical siblings with standard-risk leukemia. Blood 2002; 100: 761–767.

    CAS  PubMed  Google Scholar 

  30. Ringden O, Labopin M, Beelen DW, Volin L, Ehninger G, Finke J et al. Bone marrow or peripheral blood stem cell transplantation from unrelated donors in adults patients with acute myeloid leukaemia, an Acute Leukaemia Working Party analysis in 2262 patients. J Intern Med 2012; 272: 472–483.

    CAS  PubMed  Google Scholar 

  31. Gallardo D, de la Camara R, Nieto JB, Espigado I, Iriondo A, Jiménez-Velasco A et al. Is mobilized peripheral blood comparable with bone marrow as a source of hematopoietic stem cells for allogeneic transplantation from HLA-identical sibling donors? A case–control study. Haematologica 2009; 94: 1282–1288.

    PubMed  PubMed Central  Google Scholar 

  32. Baker KS, Fraser CJ . Quality of life and recovery after graft-versus-host disease. Best Pract Res Clin Haematol 2008; 21: 333–341.

    PubMed  Google Scholar 

  33. Levine JE, Wiley J, Kletzel M, Yanik G, Hutchinson RJ, Koehler M et al. Cytokine-mobilized allogeneic peripheral blood stem cell transplants in children result in rapid engraftment and a high incidence of chronic GVHD. Bone Marrow Transplant. 2000; 25: 13–18.

    CAS  PubMed  Google Scholar 

  34. Scott MA, Gandhi MK, Jestice HK, Mahendra P, Bass G, Marcus RE . A trend towards an increased incidence of chronic graft-versus-host disease following allogeneic peripheral blood progenitor cell transplantation: a case controlled study. Bone Marrow Transplant. 1998; 22: 273–276.

    CAS  PubMed  Google Scholar 

  35. Urbano-Ispizua A, Garcia-Conde J, Brunet S, Hernández F, Sanz G, Petit J et al. High incidence of chronic graft versus host disease after allogeneic peripheral blood progenitor cell transplantation. The Spanish Group of Allo-PBPCT. Haematologica 1997; 82: 683–689.

    CAS  PubMed  Google Scholar 

  36. Pasquini MC . Impact of graft-versus-host disease on survival. Best Pract Res Clin Haematol 2008; 21: 193–204.

    PubMed  Google Scholar 

  37. Socie G, Stone JV, Wingard JR, Weisdorf D, Henslee-Downey PJ, Bredeson C et al. Long-term survival and late deaths after allogeneic bone marrow transplantation. N Engl J Med 1999; 341: 14–21.

    CAS  PubMed  Google Scholar 

  38. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  PubMed  Google Scholar 

  39. Niederwieser D, Lange T, Cross M, Basara N, Al-Ali H . Reduced intensity conditioning (RIC) haematopoietic cell transplants in elderly patients with AML. Best Pract Res Clin Haematol 2006; 19: 825–838.

    PubMed  Google Scholar 

  40. Kröger N, Bacher U, Bader P, Bottcher S, Borowitz MJ, Dreger P et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the committee on disease-specific methods and strategies for monitoring relapse following allogeneic stem cell transplantation. part II: chronic leukemias, myeloproliferative neoplasms, and lymphoid malignancies. Biol Blood Marrow Transplant 2010; 16: 1325–1346.

    PubMed  Google Scholar 

  41. Baron F, Little MT, Storb R . Kinetics of engraftment following allogeneic hematopoietic cell transplantation with reducedintensity or nonmyeloablative conditioning. Blood Rev 2005; 19: 153–164.

    PubMed  Google Scholar 

  42. Favre G, Beksaç M, Bacigalupo A, Ruutu T, Nagler A, Gluckman E et al. Differences between graft product and donor side effects following bone marrow or stem cell donation. Bone Marrow Transplant 2003; 32: 873–880.

    CAS  PubMed  Google Scholar 

  43. Takeyama K, Ohto H . PBSC mobilization. Transfus Apher Sci 2004; 31: 233–243.

    PubMed  Google Scholar 

  44. Pastore D, Specchia G, Mestice A, Liso A, Pannunzio A, Carluccio P et al. Good and poor CD34+ cells mobilization in acute leukemia: analysis of factors affecting the yield of progenitor cells. Bone Marrow Transplant 2004; 33: 1083–1087.

    CAS  PubMed  Google Scholar 

  45. Falzetti F, Aversa F, Minelli O, Tabilio A . Spontaneous rupture of spleen during peripheral blood stem-cell mobilisation in a healthy donor. Lancet 1999; 353: 555.

    CAS  PubMed  Google Scholar 

  46. Martino M, Morabito F, Callea I, Pontari A, Irrera G, Pucci G et al. Harvesting peripheral blood progenitor cells from healthy donors with a short course of recombinant human granulocyte-colony-stimulating factor. Transfus Med 2005; 15: 323–328.

    CAS  PubMed  Google Scholar 

  47. Falanga A, Marchetti M, Evangelista V, Manarini S, Oldani E, Giovanelli S et al. Neutrophil activation and hemostatic changes in healthy donors receiving granulocyte colony stimulating factor. Blood 1999; 93: 2506–2514.

    CAS  PubMed  Google Scholar 

  48. Becker PS, Wagle M, Matous S, Swanson RS, Pihan G, Lowry PA et al. Spontaneous splenic rupture following administration of G-CSF: occurrence in an allogeneic donor of peripheral blood stem cells. Biol Blood Marrow Transplant 1997; 3: 45–49.

    CAS  PubMed  Google Scholar 

  49. Stroncek D, Shawker T, Folmann D, Leitman SF . G-CSF induced spleen size changes in PBPC donors. Transfusion 2003; 43: 609–613.

    CAS  PubMed  Google Scholar 

  50. Tassi C, Tazzari PL, Bonifazi F, Giudice V, Nannetti A, Ricci F et al. Short- and long-term haematological surveillance of healthy donors of allogeneic peripheral haematopoietic progenitors mobilized with G-CSF: a single institution prospective study. Bone Marrow Transplant 2005; 36: 289–294.

    CAS  PubMed  Google Scholar 

  51. Stroncek DF, Clay ME, Herr G, Smith J, Ilstrup S, McCullough J . Blood counts in healthy donors 1 year after the collection of granulocyte-colony stimulating factor mobilized progenitor cells and the results of a second mobilization and collection. Transfusion 1997; 37: 304–308.

    CAS  PubMed  Google Scholar 

  52. de la Rubia J, de Arriba F, Arbona C, Pascual MJ, Zamora C, Insunza A et al. Follow-up of healthy donors receiving granulocyte colony-stimulating factor for peripheral blood progenitor cell mobilization and collection. Results of the Spanish Donor Registry. Haematologica 2008; 93: 735–740.

    CAS  PubMed  Google Scholar 

  53. Pulsipher MA, Chitphakdithai P, Miller JP, Logan BR, King RJ, Rizzo JD et al. Adverse events among 2408 unrelated donors of peripheral blood stem cells: results of a prospective trial from the National Marrow Donor Program. Blood 2009; 113: 3604–3611.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Holig K, Kramer M, Kroschinsky F, Bornhäuser M, Mengling T, Schmidt AH et al. Safety and efficacy of hematopoietic stem cell collection from mobilized peripheral blood in unrelated volunteers: 12 years of single-center experience in 3928 donors. Blood 2009; 114: 3757–3763.

    PubMed  Google Scholar 

  55. Tigue CC, McKoy JM, Evens AM, Trifilio SM, Tallman MS, Bennett CL . Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the research on adverse drug events and reports project. Bone Marrow Transplant 2007; 40: 185–192.

    CAS  PubMed  Google Scholar 

  56. Elfenbein GJ, Sackstein R, Oblon DJ . Do G-CSF mobilized, peripheral blood-derived stem cells from healthy, HLA-identical donors really engraft more rapidly than do G- CSF primed, bone marrow-derived stem cells? No! blood cells. Blood Cells Mol Dis 2004; 32: 106–111.

    CAS  PubMed  Google Scholar 

  57. Martinez C, Urbano A, Rozman M, Rovira M, Marin P, Montfort N et al. Effects of short-term administration of G-CSF (filgrastim) on bone marrow progenitor cells: analysis of serial marrow samples from normal donors. Bone Marrow Transplant 1999; 23: 15–19.

    CAS  PubMed  Google Scholar 

  58. Bodine N, Seidel E, Orlic D . Bone marrow collected 14-days after in vivo administration of granulocyte colony-stimulating factor and stem cell factor to mice has 10-fold more repopulating ability than untreated bone marrow. Blood 1996; 88: 89–97.

    CAS  PubMed  Google Scholar 

  59. Zhang C, Zhang X, Chen XH . Cellular mechanism for granulocyte-colony stimulating factor in the prevention of graft-versus host disease in combined bone marrow and peripheral blood transplantation for hematological malignancies: the composition in collection. Transfus Apher Sci 2013; 48: 3–9.

    PubMed  Google Scholar 

  60. Chang YJ, Huang XJ . Use of G-CSF stimulated marrow in allogeneic hematopoietic stem cell transplantation settings: a comprehensive review. Clin Transplant 2011; 25: 13–23.

    CAS  PubMed  Google Scholar 

  61. Lindemann M, Grosse-Wilde H, Ottinger HD, Peceny R, Beelen DW . G-CSF-induced alteration of in vitro alloreactivity in stem cell donors is predictive for the occurrence of acute GVHD in recipients. Transplantation 2005; 79: 377–378.

    PubMed  Google Scholar 

  62. Jeger A, Favre G, Lutz JM, Stern M, Usel M, Rovo A et al. Tumor incidence in related hematopoietic stem cell donors. Bone Marrow Transplant 2011; 46: 1240–1244.

    CAS  PubMed  Google Scholar 

  63. Pessach I, Shimoni A, Nagler A . Granulocyte-colony stimulating factor for hematopoietic stem cell donation from healthy female donors during pregnancy and lactation: what do we know? Hum Reprod Update 2013; 19: 259–267.

    CAS  PubMed  Google Scholar 

  64. Chan KW, Gajewski JL, Supkis D Jr, Pentz R, Champlin R, Bleyer WA . Use of minors as bone marrow donors: Current attitude and management. A survey of 56 pediatric transplantation centers. J Pediatr 1996; 128: 644–648.

    CAS  PubMed  Google Scholar 

  65. Pulsipher MA, Nagler A, Iannone R, Nelson RM . Weighing the risks of G-CSF administration, leukopheresis, and standard marrow harvest: ethical and safety considerations for normal pediatric hematopoietic cell donors. Pediatr Blood Cancer 2006; 46: 422–433.

    PubMed  Google Scholar 

  66. Chang Y-J, Zhao X-Y, Huo M-R, Huang X-J . Expression profiles of adhesion molecules on naıve T cells in bone marrow grafts of healthy donors treated with granulocyte colony-stimulating factor. Transpl Immunol 2009; 21: 228–233.

    CAS  PubMed  Google Scholar 

  67. Resnick IB, Barkats C, Shapira MY, Stepensky P, Bloom AI, Shimoni A et al. Treatment of severe steroid resistant acute GVHD with mesenchymal stromal cells (MSC). Am J Blood Res 2013; 3: 225–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Brouard N, Driessen R, Short B, Simmons PJ . G-CSF increases mesenchymal precursor cell numbers in the bone marrow via an indirect mechanism involving osteoclast-mediated bone resorption. Stem Cell Res 2010; 5: 65–75.

    CAS  PubMed  Google Scholar 

  69. Jun HX, Jun CY, Yu ZX . A direct comparison of immunological characteristics of granulocyte colony-stimulating factor (G-CSF)-primed bone marrow grafts and G-CSF mobilized peripheral blood grafts. Haematologica 2005; 90: 715–716.

    PubMed  Google Scholar 

  70. Larghero J, Rocha V, Porcher R, Filion A, Ternaux B, Lacassagne MN et al. Association of bone marrow natural killer cell dose with neutrophil recovery and chronic graft-versus-host disease after HLA identical sibling bone marrow transplants. Br J Haematol 2007; 138: 101–109.

    PubMed  Google Scholar 

  71. Isola L, Scigliano E, Fruchtman S . Long-term follow-up after allogeneic G-CSF-primed BMT. Biol Blood Marrow Transplant 2000; 6: 428–433.

    CAS  PubMed  Google Scholar 

  72. Couban S, Messner HA, Andreou P, Egan B, Price S, Tinker L et al. Bone marrow mobilized with granulocyte colony-stimulating factor in related allogeneic transplant recipients: a study of 29 patients. Biol Blood Marrow Transplant 2000; 6: 422–427.

    CAS  PubMed  Google Scholar 

  73. Ji S, Chen H, Wang H, Ma J, Pan S, Xue M et al. Low incidence of severe aGVHD and accelerating hemopoietic reconstitution in allo-BMT using lenograstim stimulated BM cells. Chin Med J (Engl) 2001; 114: 191–195.

    CAS  Google Scholar 

  74. Ji SQ, Chen HR, Wang HX, Yan HM, Pan SP, Xun CQ . Comparison of outcome of allogeneic bone marrow transplantation with and without granulocyte colony-stimulating factor (lenograstim) donor marrow priming in patients with chronic myelogenous leukemia. Biol Blood Marrow Transplant 2002; 8: 261–267.

    PubMed  Google Scholar 

  75. Ostronoff M, Ostronoff F, Souto Maior P, Matias C, Calixto R, Sucupira A et al. Pilot study of allogeneic G-CSF-stimulated bone marrow transplantation: harvest, engraftment, and graft-versus-host disease. Biol Blood Marrow Transplant 2006; 12: 729–733.

    CAS  PubMed  Google Scholar 

  76. Serody JS, Sparks SD, Lin Y, Capel EJ, Bigelow SH, Kirby SL et al. Comparison of G-CSFmobilized PBPC and G-CSF stimulated bone marrow as a source of stem cells in HLA-matched sibling transplantation. Biol Blood Marrow Transplant 2000; 6: 434–440.

    CAS  PubMed  Google Scholar 

  77. Morton J, Hutchins C, Durrant S . Granulocyte-colony-stimulating factor (G-CSF)-primed allogeneic bone marrow: significantly less graft-versus-host disease and comparable engraftment to G-CSF-mobilized peripheral blood stem cells. Blood 2001; 98: 3186–3191.

    CAS  PubMed  Google Scholar 

  78. Zhao XS, Chen Y, Zhao XY, Liu DH, Xu LP, Wang Y et al. Improved outcomes using G-CSF-mobilized blood and bone marrow grafts as the source of stem cells compared with G-PB after HLA-identical sibling transplantation in patients with acute leukemia. Clin Transplant 2013; 27: 844–851.

    PubMed  Google Scholar 

  79. Frangoul H, Nemecek ER, Billheimer D, Pulsipher MA, Khan S, Woolfrey A et al. A prospective study of G-CSF primed bone marrow as a stem-cell source for allogeneic bone marrow transplantation in children: a Pediatric Blood and Marrow Transplant Consortium (PBMTC) study. Blood 2007; 110: 4584–4587.

    CAS  PubMed  Google Scholar 

  80. Kim H, Kang HJ, Lee JW, Park KD, Shin HY, Ahn HS . Early engraftment of GCSF-primed allogeneic bone marrow transplantation in pediatric patients regardless of donor–recipient weight differences. Ann Hematol 2012; 91: 751–758.

    CAS  PubMed  Google Scholar 

  81. Petersdorf EW . The World Marrow Donor Association: 20 years of international collaboration for the support of unrelated donor and cord blood hematopoietic cell transplantation. Bone Marrow Transplant 2010; 45: 807–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Foeken LM, Green A, Hurley CK, Marry E, Wiegand T, Oudshoorn M et al. Monitoring the international use of unrelated donors for transplantation: the WMDA annual reports. Bone Marrow Transplant 2010; 45: 811–818.

    CAS  PubMed  Google Scholar 

  83. Ballen KK, Spitzer TR . The great debate: haploidentical or cord blood transplant. Bone Marrow Transplant 2011; 46: 323–329.

    CAS  PubMed  Google Scholar 

  84. Ballen KK, Koreth J, Chen Y-B, Dey BR, Spitzer TR . Selection of optimal alternative graft source: mismatched unrelated donor, umbilical cord blood, or haploidentical transplant. Blood 2012; 119: 1972–1980.

    CAS  PubMed  Google Scholar 

  85. Ottinger HD, Ferencik S, Beelen DW, Lindemann M, Peceny R, Elmaagacli AH et al. Hematopoietic stem cell transplantation: contrasting the outcome of transplantations from HLA-identical siblings, partially HLA-mismatched related donors, and HLA-matched unrelated donors. Blood 2003; 102: 1131–1137.

    CAS  PubMed  Google Scholar 

  86. Benito AI, Diaz MA, Gonzalez-Vicent M, Sevilla J, Madero L . Hematopoietic stem cell transplantation using umbilical cord blood progenitors: review of current clinical results. Bone Marrow Transplant 2004; 33: 675–690.

    CAS  PubMed  Google Scholar 

  87. Aversa F . Haploidentical haematopoietic stem cell transplantation for acute leukaemia in adults: experience in Europe and the United States. Bone Marrow Transplant. 2008; 41: 473–481.

    CAS  PubMed  Google Scholar 

  88. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W et al. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant 2006; 38: 291–297.

    PubMed  Google Scholar 

  89. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W et al. Treatment of acute leukemia with unmanipulated HLA mismatched/haploidentical blood and bone marrow transplantation. Biol Blood Marrow Transplant 2009; 15: 257–265.

    CAS  PubMed  Google Scholar 

  90. Chen Y, Liu K, Xu L, Chen H, Liu D, Zhang X et al. HLA-mismatched hematopoietic SCT without in vitro T-cell depletion for myelodysplastic syndrome. Bone Marrow Transplant 2010; 45: 1333–1339.

    CAS  PubMed  Google Scholar 

  91. Wang HX, Yan HM, Wang ZD, Xue M, Liu J, Guo ZK . Haploidentical hematopoietic stem cell transplantation in hematologic malignancies with G-CSF mobilized bone marrow plus peripheral blood stem cells grafts without T cell depletion: a single center report of 29 cases. Leuk Lymphoma 2012; 53: 654–659.

    CAS  PubMed  Google Scholar 

  92. Wang Y, Liu DH, Liu KY, Xu LP, Zhang XH, Han W et al. Long-Term follow-up of haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of leukemia. Cancer 2013; 119: 978–985.

    PubMed  Google Scholar 

  93. Xu LP, Liu KY, Liu DH, Chen H, Han W, Chen YH et al. The inferiority of G-PB to rhG-CSF-mobilized blood and marrow grafts as a stem cell source in patients with high-risk acute leukemia who underwent unmanipulated HLA-mismatched/haploidentical transplantation: a comparative analysis. Bone Marrow Transplant 2010; 45: 985–992.

    CAS  PubMed  Google Scholar 

  94. Di Bartolomeo P, Santarone S, De Angelis G, Picardi A, Cudillo L, Cerretti R et al. Haploidentical, unmanipulated, G-CSF-primed bone marrow transplantation for patients with high-risk hematologic malignancies. Blood 2013; 121: 849–857.

    CAS  PubMed  Google Scholar 

  95. Ji SQ, Chen HR, Wang HX, Yan HM, Zhu L, Liu J et al. G-CSF-primed haploidentical marrow transplantation without ex vivo T cell depletion: an excellent alternative for high-risk leukemia. Bone Marrow Transplant 2002; 30: 861–866.

    PubMed  Google Scholar 

  96. De Angelis G, Santarone S, Cerretti R . Non T-cell depleted, G-CSF primed bone marrow transplantation from haploidentical donors for patients with high-risk acute myeloid leukaemia. 37th Annual Meeting of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2011; 46: S39.

    Google Scholar 

Download references

Acknowledgements

Special thanks to Prof. Essie Kariv for her valuable and thoughtful comments and crucial help in editing the manuscript.

Author Contributions

The initial idea and concept for the review was of AN, which also helped in allocation of some of the relevant literature. All data and results were extracted by IP, and were crosschecked by three research specialists (AN, IR and AS). IP was responsible for the main writing of the study, AN revised the paper critically and all authors revised the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Nagler.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pessach, I., Resnick, I., Shimoni, A. et al. G-CSF-primed BM for allogeneic SCT: revisited. Bone Marrow Transplant 50, 892–898 (2015). https://doi.org/10.1038/bmt.2015.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2015.25

This article is cited by

Search

Quick links