Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cellular immunotherapy for plasma cell myeloma

Abstract

Allogeneic hematopoietic cell transplantation for plasma cell myeloma can lead to graft-vs-myeloma immunity and long-term survivorship, but limited efficacy and associated toxicities have prevented its widespread use. Cellular immunotherapies seek to induce more specific, reliable and potent antimyeloma immune responses with less treatment-related risk than is possible with allogeneic transplantation. Strategies under development include infusion of vaccine-primed and ex vivo expanded/costimulated autologous T cells after high-dose melphalan, genetic engineering of autologous T cells with receptors for myeloma-specific epitopes, administration of DC/plasma cell fusions and administration expanded marrow-infiltrating lymphocytes. In addition, novel immunomodulatory drugs such as inhibitors of the programmed death-1 T cell regulatory pathway may synergize with cellular immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lokhorst H, Einsele H, Vesole D, Bruno B, San Miguel J, Pérez-Simon JA et al. International Myeloma Working Group consensus statement regarding the current status of allogeneic stem-cell transplantation for multiple myeloma. J Clin Oncol 2010; 28: 4521–4530.

    Article  PubMed  Google Scholar 

  2. Bladé J, Rosiñol L, Cibeira MT, Rovira M, Carreras E . Hematopoietic stem cell transplantation for multiple myeloma beyond 2010. Blood 2010; 115: 1–10.

    Article  Google Scholar 

  3. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Français du Myélome. N Engl J Med 1996; 335: 91–97.

    Article  CAS  PubMed  Google Scholar 

  4. Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003; 348: 1875–1883.

    Article  CAS  PubMed  Google Scholar 

  5. Stadtmauer EA . Multiple myeloma, 2004—One or Two Transplants? N Engl J Med 2003; 349: 2551–2553.

    Article  CAS  PubMed  Google Scholar 

  6. Attal M, Harousseau J-L, Facon T, Guilhot F, Doyen C, Fuzibet J-G et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med 2003; 349: 2495–2502.

    Article  CAS  PubMed  Google Scholar 

  7. Garban F, Attal M, Michallet M, Hulin C, Bourhis J, Yakoub-Agha I et al. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood 2006; 107: 1–8.

    Article  CAS  Google Scholar 

  8. Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 2007; 356: 1–11.

    Article  Google Scholar 

  9. Rosiñol L, Pérez-Simón JA, Sureda A, de La Rubia J, de Arriba F, Lahuerta JJ et al. A prospective PETHEMA study of tandem autologous transplantation versus autograft followed by reduced-intensity conditioning allogeneic transplantation in newly diagnosed multiple myeloma. Blood 2008; 112: 1–4.

    Article  CAS  Google Scholar 

  10. Björkstrand B, Iacobelli S, Hegenbart U, Gruber A, Greinix H, Volin L et al. Tandem autologous/reduced-intensity conditioning allogeneic stem-cell transplantation versus autologous transplantation in myeloma: long-term follow-up. J Clin Oncol 2011; 29: 1–8.

    Article  Google Scholar 

  11. Krishnan A, Pasquini MC, Logan B, Stadtmauer EA, Vesole DH, Alyea E et al. Autologous haemopoietic stem-cell transplantation followed by allogeneic or autologous haemopoietic stem-cell transplantation in patients with multiple myeloma (BMT CTN 0102): a phase 3 biological assignment trial. Lancet Oncol 2011; 12: 1195–1203.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Giaccone L, Storer B, Patriarca F, Rotta M, Sorasio R, Allione B et al. Long-term follow-up of a comparison of nonmyeloablative allografting with autografting for newly diagnosed myeloma. Blood 2011; 117: 6721–6727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Le Blanc R, Montminy-Métivier S, Bélanger R, Busque L, Fish D, Roy DC et al. Allogeneic transplantation for multiple myeloma: further evidence for a GVHD-associated graft-versus-myeloma effect. Bone Marrow Transplant 2001; 28: 1–8.

    Article  Google Scholar 

  14. Lokhorst HM, Wu K, Verdonck LF, Laterveer LL, van de Donk NW, van Oers MH et al. The occurrence of graft-versus-host disease is the major predictive factor for response to donor lymphocyte infusions in multiple myeloma. Blood 2004; 103: 1–4.

    Article  CAS  Google Scholar 

  15. Crawley C, Lalancette M, Szydlo R, Gilleece M, Peggs K, Mackinnon S et al. Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood 2005; 105: 1–9.

    Article  CAS  Google Scholar 

  16. Ringdén O, Shrestha S, Da Silva GT, Zhang MJ, Dispenzieri A, Remberger M et al. Effect of acute and chronic GVHD on relapse and survival after reduced-intensity conditioning allogeneic transplantation for myeloma. Bone Marrow Transplant 2011; 47: 1–7.

    Google Scholar 

  17. Tricot G, Vesole DH, Jagannath S, Hilton J, Munshi N, Barlogie B . Graft-versus-myeloma effect: proof of principle. Blood 1996; 87: 1196–1198.

    CAS  PubMed  Google Scholar 

  18. Verdonck LF, Lokhorst HM, Dekker AW, Nieuwenhuis HK, Petersen EJ . Graft-versus-myeloma effect in two cases. Lancet 1996; 347: 800–801.

    Article  CAS  PubMed  Google Scholar 

  19. van der Griend R, Verdonck LF, Petersen EJ, Veenhuizen P, Bloem AC, Lokhorst HM . Donor leukocyte infusions inducing remissions repeatedly in a patient with recurrent multiple myeloma after allogeneic bone marrow transplantation. Bone Marrow Transplant 1999; 23: 1–3.

    Article  Google Scholar 

  20. Salama M, Nevill T, Marcellus D, Parker P, Johnson M, Kirk A et al. Donor leukocyte infusions for multiple myeloma. Bone Marrow Transplant 2000; 26: 1–6.

    Article  Google Scholar 

  21. Lokhorst HM, Schattenberg A, Cornelissen JJ, van Oers MH, Fibbe W, Russell I et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 2000; 18: 1–7.

    Article  Google Scholar 

  22. Alyea E, Weller E, Schlossman R, Canning C, Mauch P, Ng A et al. Outcome after autologous and allogeneic stem cell transplantation for patients with multiple myeloma: impact of graft-versus-myeloma effect. Bone Marrow Transplant 2003; 32: 1–7.

    Article  Google Scholar 

  23. Bellucci R, Alyea EP, Weller E, Chillemi A, Hochberg E, Wu CJ et al. Immunologic effects of prophylactic donor lymphocyte infusion after allogeneic marrow transplantation for multiple myeloma. Blood 2002; 99: 1–9.

    Article  Google Scholar 

  24. Orsini E, Bellucci R, Alyea EP, Schlossman R, Canning C, McLaughlin S et al. Expansion of tumor-specific CD8+ T cell clones in patients with relapsed myeloma after donor lymphocyte infusion. Cancer Res 2003; 63: 1–9.

    Google Scholar 

  25. Orsini E, Alyea EP, Schlossman R, Canning C, Soiffer RJ, Chillemi A et al. Changes in T cell receptor repertoire associated with graft-versus-tumor effect and graft-versus-host disease in patients with relapsed multiple myeloma after donor lymphocyte infusion. Bone Marrow Transplant 2000; 25: 1–10.

    Article  Google Scholar 

  26. Bellucci R, Alyea EP, Chiaretti S, Wu CJ, Zorn E, Weller E et al. Graft-versus-tumor response in patients with multiple myeloma is associated with antibody response to BCMA, a plasma-cell membrane receptor. Blood 2005; 105: 1–7.

    Article  CAS  Google Scholar 

  27. Bellucci R, Wu CJ, Chiaretti S, Weller E, Davies FE, Alyea EP et al. Complete response to donor lymphocyte infusion in multiple myeloma is associated with antibody responses to highly expressed antigens. Blood 2004; 103: 1–9.

    Article  CAS  Google Scholar 

  28. Mohty M, Attal M, Marit G, Bulabois CE, Garban F, Gratecos N et al. Thalidomide salvage therapy following allogeneic stem cell transplantation for multiple myeloma: a retrospective study from the Intergroupe Francophone du Myélome (IFM) and the Société Française de Greffe de Moelle et Thérapie Cellulaire (SFGM-TC). Bone Marrow Transplant 2005; 35: 1–5.

    Article  CAS  Google Scholar 

  29. Minnema MC, van der Veer MS, Aarts T, Emmelot M, Mutis T, Lokhorst HM . Lenalidomide alone or in combination with dexamethasone is highly effective in patients with relapsed multiple myeloma following allogeneic stem cell transplantation and increases the frequency of CD4+Foxp3+ T cells. Leukemia 2009; 23: 1–3.

    Article  CAS  Google Scholar 

  30. Kneppers E, van der Holt B, Kersten MJ, Zweegman S, Meijer E, Huls G et al. Lenalidomide maintenance after nonmyeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible: results of the HOVON 76 Trial. Blood 2011; 118: 2413–2419.

    Article  CAS  PubMed  Google Scholar 

  31. El-Cheikh J, Crocchiolo R, Furst S, Ladaique P, Castagna L, Faucher C et al. Lenalidomide plus donor lymphocytes infusion after allogeneic stem-cell transplantation with reduced-intensity conditioning in patients with high-risk multiple myeloma. Exp Hematol 2012; 40: 521–527.

    Article  CAS  PubMed  Google Scholar 

  32. Koreth J, Alyea EP, Murphy WJ, Welniak LA . Proteasome inhibition and allogeneic hematopoietic stem cell transplantation: a review. Biol Blood Marrow Transplant 2009; 15: 1502–1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. El-Cheikh J, Michallet M, Nagler A, de Lavallade H, Nicolini FE, Shimoni A et al. High response rate and improved graft-versus-host disease following bortezomib as salvage therapy after reduced intensity conditioning allogeneic stem cell transplantation for multiple myeloma. Haematologica 2008; 93: 1–4.

    Article  CAS  Google Scholar 

  34. Hood AF, Vogelsang GB, Black LP, Farmer ER, Santos GW . Acute graft-vs-host disease. Development following autologous and syngeneic bone marrow transplantation. Arch Dermatol 1987; 123: 745–750.

    Article  CAS  PubMed  Google Scholar 

  35. Holmberg L, Kikuchi K, Gooley TA, Adams KM, Hockenbery DM, Flowers MED et al. Gastrointestinal graft-versus-host disease in recipients of autologous hematopoietic stem cells: incidence, risk factors, and outcome. Biol Blood Marrow Transplant 2006; 12: 226–234.

    Article  PubMed  Google Scholar 

  36. Cogbill CH, Drobyski WR, Komorowski RA . Gastrointestinal pathology of autologous graft-versus-host disease following hematopoietic stem cell transplantation: a clinicopathological study of 17 cases. Mod Pathol 2011; 24: 117–125.

    Article  PubMed  Google Scholar 

  37. Drobyski WR, Hari P, Keever-Taylor C, Komorowski R, Grossman W . Severe autologous GVHD after hematopoietic progenitor cell transplantation for multiple myeloma. Bone Marrow Transplant 2009; 43: 169–177.

    Article  CAS  PubMed  Google Scholar 

  38. Adams KM, Holmberg LA, Leisenring W, Fefer A, Guthrie KA, Tylee TS et al. Risk factors for syngeneic graft-versus-host disease after adult hematopoietic cell transplantation. Blood 2004; 104: 1894–1897.

    Article  CAS  PubMed  Google Scholar 

  39. Lazarus HM, Sommers SR, Arfons LM, Fu P, Ataergin SA, Kaye NM et al. Spontaneous autologous graft-versus-host disease in plasma cell myeloma autograft recipients: flow cytometric analysis of hematopoietic progenitor cell grafts. Biol Blood Marrow Transplant 2011; 17: 970–978.

    Article  CAS  PubMed  Google Scholar 

  40. Biernacki MA, Tai YT, Zhang GL, Alonso A, Zhang W, Prabhala R et al. Novel myeloma-associated antigens revealed in the context of syngeneic hematopoietic stem cell transplantation. Blood 2012; 119: 3142–3150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Powles R, Singhal S, Treleaven J, Kulkarni S, Horton C, Mehta J . Identification of patients who may benefit from prophylactic immunotherapy after bone marrow transplantation for acute myeloid leukemia on the basis of lymphocyte recovery early after transplantation. Blood 1998; 91: 3481–3486.

    CAS  PubMed  Google Scholar 

  42. Pavletic ZS, Joshi SS, Pirruccello SJ, Tarantolo SR, Kollath J, Reed EC et al. Lymphocyte reconstitution after allogeneic blood stem cell transplantation for hematologic malignancies. Bone Marrow Transplant 1998; 21: 33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Porrata LF, Gertz MA, Inwards DJ, Inwards DJ, Litzow MR, Lacy MQ, Tefferi A et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood 2001; 98: 579–585.

    Article  CAS  PubMed  Google Scholar 

  44. Joao C, Porrata LF, Inwards DJ, Ansell SM, Micallef IN, Johnston PB et al. Early lymphocyte recovery after autologous stem cell transplantation predicts superior survival in mantle-cell lymphoma. Bone Marrow Transplantation 2006; 37: 865–871.

    Article  CAS  PubMed  Google Scholar 

  45. Kim H, Sohn HJ, Kim S, Lee JS, Kim WK, Suh C . Early lymphocyte recovery predicts longer survival after autologous peripheral blood stem cell transplantation in multiple myeloma. Bone Marrow Transplantation 2006; 37: 1037–1042.

    Article  CAS  PubMed  Google Scholar 

  46. Hiwase DK, Hiwase S, Bailey M, Bollard G, Schwarer AP . Higher infused lymphocyte dose predicts higher lymphocyte recovery, which in turn, predicts superior overall survival following autologous hematopoietic stem cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2008; 14: 116–124.

    Article  PubMed  Google Scholar 

  47. Gordan LN, Sugrue MW, Lynch JW, Williams KD, Khan SA, Moreb JS . Correlation of early lymphocyte recovery and progression-free survival after autologous stem-cell transplant in patients with Hodgkin's and non-Hodgkin's Lymphoma. Bone Marrow Transplant 2003; 31: 1009–1013.

    Article  CAS  PubMed  Google Scholar 

  48. Porrata LF, Inwards DJ, Micallef IN, Ansell SM, Geyer SM, Markovic SN . Early lymphocyte recovery post-autologous haematopoietic stem cell transplantation is associated with better survival in Hodgkin's disease. Br J Haematol 2002; 117: 629–633.

    Article  PubMed  Google Scholar 

  49. Porrata LF, Litzow MR, Tefferi A, Letendre L, Kumar S, Geyer SM et al. Early lymphocyte recovery is a predictive factor for prolonged survival after autologous hematopoietic stem cell transplantation for acute myelogenous leukemia. Leukemia 2002; 16: 1311–1318.

    Article  CAS  PubMed  Google Scholar 

  50. Porrata LF, Gertz MA, Litzow MR, Lacy MQ, Dispenzieri A, Inwards DJ et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation for patients with primary systemic amyloidosis. Clin Cancer Res 2005; 11: 1210–1218.

    CAS  PubMed  Google Scholar 

  51. Porrata LF, Gertz MA, Geyer SM, Litzow MR, Gastineau DA, Moore SB et al. The dose of infused lymphocytes in the autograft directly correlates with clinical outcome after autologous peripheral blood hematopoietic stem cell transplantation in multiple myeloma. Leukemia 2004; 18: 1085–1092.

    Article  CAS  PubMed  Google Scholar 

  52. Porrata LF, Gastineau DA, Padley D, Bundy K, Markovic SN . Re-infused autologous graft natural killer cells correlates with absolute lymphocyte count recovery after autologous stem cell transplantation. Leuk Lymphoma 2003; 44: 997–1000.

    Article  CAS  PubMed  Google Scholar 

  53. Porrata LF, Inwards DJ, Ansell SM, Micallef IN, Johnston PB, Gastineau DA et al. Early lymphocyte recovery predicts superior survival after autologous stem cell transplantation in non-Hodgkin lymphoma: a prospective study. Bio Blood Marrow Transplant 2008; 14: 807–816.

    Article  Google Scholar 

  54. Porrata LF, Litzow MR, Markovic SN . Immune reconstitution after autologous hematopoietic stem cell transplantation. Mayo Clin Proc 2001; 76: 407–412.

    Article  CAS  PubMed  Google Scholar 

  55. Levine BL, Bernstein WB, Connors M, Craighead N, Lindsten T, Thompson CB et al. Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 1997; 159: 5921–5930.

    CAS  PubMed  Google Scholar 

  56. Levine BL, Bernstein WB, Aronson NE, Schlienger K, Cotte J, Perfetto S et al. Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat Med 2002; 8: 47–53.

    Article  CAS  PubMed  Google Scholar 

  57. Laport GG, Levine BL, Stadtmauer EA, Schuster SJ, Luger SM, Grupp S et al. Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood 2003; 102: 2004–2013.

    Article  CAS  PubMed  Google Scholar 

  58. Rapoport AP, Levine BL, Badros A, Meisenberg B, Ruehle K, Nandi A et al. Molecular remission of CML after autotransplantation followed by adoptive transfer of costimulated autologous T cells. Bone Marrow Transplant 2004; 33: 53–60.

    Article  CAS  PubMed  Google Scholar 

  59. Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med 2005; 11: 1230–1237.

    Article  CAS  PubMed  Google Scholar 

  60. Tchao NK, Turka LA . Lymphodepletion and homeostatic proliferation: implications for transplantation. Am J Transplant 2012; 12: 1079–1090.

    Article  CAS  PubMed  Google Scholar 

  61. Rapoport AP, Stadtmauer EA, Aqui N, Vogl D, Chew A, Fang H-B et al. Rapid immune recovery and graft-versus-host disease-like engraftment syndrome following adoptive transfer of Costimulated autologous T cells. Clin Cancer Res 2009; 15: 4499–4507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Fang HB, Cai L et al. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood 2011; 117: 788–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stadtmauer EA, Vogl DT, Luning Prak E, Boyer J, Aqui NA, Rapoport AP et al. Transfer of influenza vaccine-primed costimulated autologous T cells after stem cell transplantation for multiple myeloma leads to reconstitution of influenza immunity: results of a randomized clinical trial. Blood 2011; 117: 63–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Atanackovic D, Arfsten J, Cao Y, Gnjatic S, Schnieders F, Bartels K et al. Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood 2007; 109: 1–11.

    Article  Google Scholar 

  65. Varela-Rohena A, Carpenito C, Perez EE, Richardson M, Parry RV, Milone M et al. Genetic engineering of T cells for adoptive immunotherapy. Immunol Res 2008; 42: 166–181.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Van Rhee F, Szmania SM, Zhan F, Gupta SK, Pomtree M, Lin P et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 2005; 105: 3939–3944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Palucka K, Banchereau J . Cancer immunotherapy via dendritic cells. Nature reviews. Cancer 2012; 12: 265–277.

    CAS  PubMed  Google Scholar 

  68. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363: 411–422.

    Article  CAS  PubMed  Google Scholar 

  69. Lacy MQ, Mandrekar S, Dispenzieri A, Hayman S, Kumar S, Buadi F et al. Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol 2009; 84: 799–802.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kugler A, Stuhler G, Walden P, Zöller G, Zobywalski A, Brossart P et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 2000; 6: 332–336.

    Article  CAS  PubMed  Google Scholar 

  71. Kufe DW . Smallpox, polio and now a cancer vaccine? Nat Med 2000; 6: 252–253.

    Article  CAS  PubMed  Google Scholar 

  72. Avigan D, Vasir B, Gong J, Borges V, Wu Z, Uhl L et al. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clinical Cancer Res 2004; 10: 4699–4708.

    Article  CAS  Google Scholar 

  73. Avigan DE, Vasir B, George DJ, Oh WK, Atkins MB, McDermott DF et al. Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother 2007; 30: 749–761.

    Article  PubMed  Google Scholar 

  74. Avigan D, Rosenblatt J, Kufe D . Dendritic/tumor fusion cells as cancer vaccines. Semin Oncol 2012; 39: 287–295.

    Article  CAS  PubMed  Google Scholar 

  75. Raje N, Hideshima T, Davies FE, Chauhan D, Treon SP, Young G et al. Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol 2004; 125: 343–352.

    Article  PubMed  Google Scholar 

  76. Noonan K, Matsui W, Serafini P, Carbley R, Tan G, Khalili J et al. Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res 2005; 65: 2026–2034.

    Article  CAS  PubMed  Google Scholar 

  77. Pardoll DM . The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455–2465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443–2454.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ribas A . Tumor immunotherapy directed at PD-1. N Engl J Med 2012; 366: 2517–2519.

    Article  CAS  PubMed  Google Scholar 

  82. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 2011; 34: 409–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Görgün GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J et al. Tumor promoting immune suppressive myeloid derived suppressor cells in multiple myeloma microenvironment. Blood, (e-pub ahead of print 15 January 2013).

  84. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rapoport AP, Aqui NA, Stadtmauer EA, Badros AZ, Vogl DT, Xu Y et al. Combination immunotherapy after ASCT for multiple myeloma (MM) using MAGE-A3/Poly-ICLC Immunizations followed by vaccine-primed and activated autologous T-cells. ASH Annu Meet Abstr 2012; 120: 352.

    Google Scholar 

  86. Rapoport AP, Stadtmauer EA, Vogl DT, Weiss BM, Binder-Scholl GK, Brewer JE et al. Adoptive transfer of gene-modified T-cells engineered to express high-affinity TCRs for cancer-testis antigens (CTAs) NY-ESO-1 or Lage-1, in MM patients post auto-SCT. ASH Annu Meet Abstr 2012; 120: 472.

    Google Scholar 

  87. Rosenblatt J, Vasir B, Uhl L, Blotta S, MacNamara C, Somaiya P et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood 2011; 117: 393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rosenblatt J, Avivi I, Vasir B, Uhl L, Katz T, Somaiya P et al. Blockade of PD-1 in combination with dendritic cell/myeloma fusion cell vaccination following autologous stem cell transplantation. ASH Annu Meet Abstr 2012; 120: 578.

    Google Scholar 

  89. Noonan K, Huff CA, Sproul JMD, Lemas MVM, Rudraraju L, Luznik L et al. Phase I/II study of marrow infiltrating lymphocytes (MILs) generates measurable myeloma-specific immunity in the autologous stem cell transplant (SCT) setting. ASH Annu Meet Abstr 2011; 118: 997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E A Stadtmauer.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garfall, A., Vogl, D., Weiss, B. et al. Cellular immunotherapy for plasma cell myeloma. Bone Marrow Transplant 48, 1377–1386 (2013). https://doi.org/10.1038/bmt.2013.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2013.54

Keywords

This article is cited by

Search

Quick links