Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Nanoscience

Dark-hot resonances

A Correction to this article was published on 13 October 2010

The resonant behaviour of clusters of gold nanoparticles has been tuned by gradually bringing the particles together. The approach could have many applications, including chemical and biological sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The magnificent glass window of La Sainte Chapelle in Paris.

M. I. STOCKMAN

Figure 2: The nanoclusters studied by Hentschel and colleagues1.

References

  1. Hentschel, M. et al. Nano Lett. 10, 2721–2726 (2010).

    Article  ADS  CAS  Google Scholar 

  2. Fano, U. Nuovo Cimento 12, 154–161 (1935).

    Article  CAS  Google Scholar 

  3. Stockman, M. I., Pandey, L. N. & George, T. F. Phys. Rev. B 53, 2183–2186 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  5. Stockman, M. I., Faleev, S. V. & Bergman, D. J. Phys. Rev. Lett. 87, 167401 (2001).

    Article  ADS  CAS  Google Scholar 

  6. Fan, J. A. et al. Science 328, 1135–1138 (2010).

    Article  ADS  CAS  Google Scholar 

  7. Hao, F. et al. Nano Lett. 8, 3983–3988 (2008).

    Article  ADS  CAS  Google Scholar 

  8. Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. I. Phys. Rev. Lett. 99, 147401 (2007).

    Article  ADS  CAS  Google Scholar 

  9. Kneipp, K., Moskovits, M. & Kneipp, H. (eds) Surface-Enhanced Raman Scattering – Physics and Applications (Springer, 2006).

    Book  Google Scholar 

  10. Anker, J. N. et al. Nature Mater. 7, 442–453 (2008).

    Article  ADS  CAS  Google Scholar 

  11. Hartschuh, A., Beversluis, M. R., Bouhelier, A. & Novotny, L. Phil. Trans. R. Soc. Lond. A 362, 807–819 (2004).

    Article  ADS  CAS  Google Scholar 

  12. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Phys. Rev. Lett. 97, 017402 (2006).

    Article  ADS  Google Scholar 

  13. Kundu, J., Le, F., Nordlander, P. & Halas, N. J. Chem. Phys. Lett. 452, 115–119 (2008).

    Article  ADS  CAS  Google Scholar 

  14. Bergman, D. J. & Stockman, M. I. Phys. Rev. Lett. 90, 027402 (2003).

    Article  ADS  Google Scholar 

  15. Stockman, M. I. J. Optics 12, 024004 (2010).

    Article  ADS  Google Scholar 

  16. Noginov, M. A. et al. Nature 460, 1110–1112 (2009).

    Article  ADS  CAS  Google Scholar 

  17. Hill, M. T. et al. Optics Express 17, 11107–11112 (2009).

    Article  ADS  CAS  Google Scholar 

  18. Oulton, R. F. et al. Nature 461, 629–632 (2009).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stockman, M. Dark-hot resonances. Nature 467, 541–542 (2010). https://doi.org/10.1038/467541a

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/467541a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing